/usr/include/ql/pricingengines/asian/mcdiscreteasianengine.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2003, 2004 Ferdinando Ametrano
Copyright (C) 2007, 2008 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mcdiscreteasianengine.hpp
\brief Monte Carlo pricing engine for discrete average Asians
*/
#ifndef quantlib_mcdiscreteasian_engine_hpp
#define quantlib_mcdiscreteasian_engine_hpp
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/instruments/asianoption.hpp>
#include <ql/processes/blackscholesprocess.hpp>
namespace QuantLib {
//! Pricing engine for discrete average Asians using Monte Carlo simulation
/*! \warning control-variate calculation is disabled under VC++6.
\ingroup asianengines
*/
template<class RNG = PseudoRandom, class S = Statistics>
class MCDiscreteAveragingAsianEngine :
public DiscreteAveragingAsianOption::engine,
public McSimulation<SingleVariate,RNG,S> {
public:
typedef
typename McSimulation<SingleVariate,RNG,S>::path_generator_type
path_generator_type;
typedef typename McSimulation<SingleVariate,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<SingleVariate,RNG,S>::stats_type
stats_type;
// constructor
MCDiscreteAveragingAsianEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed);
void calculate() const {
McSimulation<SingleVariate,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
results_.value = this->mcModel_->sampleAccumulator().mean();
if (this->controlVariate_) {
// control variate might lead to small negative
// option values for deep OTM options
this->results_.value = std::max(0.0, this->results_.value);
}
if (RNG::allowsErrorEstimate)
results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
protected:
// McSimulation implementation
TimeGrid timeGrid() const;
boost::shared_ptr<path_generator_type> pathGenerator() const {
TimeGrid grid = this->timeGrid();
typename RNG::rsg_type gen =
RNG::make_sequence_generator(grid.size()-1,seed_);
return boost::shared_ptr<path_generator_type>(
new path_generator_type(process_, grid,
gen, brownianBridge_));
}
Real controlVariateValue() const;
// data members
boost::shared_ptr<GeneralizedBlackScholesProcess> process_;
Size requiredSamples_, maxSamples_;
Real requiredTolerance_;
bool brownianBridge_;
BigNatural seed_;
};
// template definitions
template<class RNG, class S>
inline
MCDiscreteAveragingAsianEngine<RNG,S>::MCDiscreteAveragingAsianEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed)
: McSimulation<SingleVariate,RNG,S>(antitheticVariate, controlVariate),
process_(process), requiredSamples_(requiredSamples),
maxSamples_(maxSamples), requiredTolerance_(requiredTolerance),
brownianBridge_(brownianBridge), seed_(seed) {
registerWith(process_);
}
template <class RNG, class S>
inline TimeGrid MCDiscreteAveragingAsianEngine<RNG,S>::timeGrid() const {
Date referenceDate = process_->riskFreeRate()->referenceDate();
DayCounter voldc = process_->blackVolatility()->dayCounter();
std::vector<Time> fixingTimes;
Size i;
for (i=0; i<arguments_.fixingDates.size(); i++) {
if (arguments_.fixingDates[i]>=referenceDate) {
Time t = voldc.yearFraction(referenceDate,
arguments_.fixingDates[i]);
fixingTimes.push_back(t);
}
}
return TimeGrid(fixingTimes.begin(), fixingTimes.end());
}
template<class RNG, class S>
inline
Real MCDiscreteAveragingAsianEngine<RNG,S>::controlVariateValue() const {
boost::shared_ptr<PricingEngine> controlPE =
this->controlPricingEngine();
QL_REQUIRE(controlPE,
"engine does not provide "
"control variation pricing engine");
DiscreteAveragingAsianOption::arguments* controlArguments =
dynamic_cast<DiscreteAveragingAsianOption::arguments*>(
controlPE->getArguments());
*controlArguments = arguments_;
controlPE->calculate();
const DiscreteAveragingAsianOption::results* controlResults =
dynamic_cast<const DiscreteAveragingAsianOption::results*>(
controlPE->getResults());
return controlResults->value;
}
}
#endif
|