This file is indexed.

/usr/include/ql/methods/lattices/trinomialtree.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
 Copyright (C) 2005 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file trinomialtree.hpp
    \brief Trinomial tree class
*/

#ifndef quantlib_trinomial_tree_hpp
#define quantlib_trinomial_tree_hpp

#include <ql/methods/lattices/tree.hpp>
#include <ql/timegrid.hpp>

namespace QuantLib {
    class StochasticProcess1D;
    //! Recombining trinomial tree class
    /*! This class defines a recombining trinomial tree approximating a
        1-D stochastic process.
        \warning The diffusion term of the SDE must be independent of the
                 underlying process.

        \ingroup lattices
    */
    class TrinomialTree : public Tree<TrinomialTree> {
        class Branching;
      public:
        enum Branches { branches = 3 };
        TrinomialTree(const boost::shared_ptr<StochasticProcess1D>& process,
                      const TimeGrid& timeGrid,
                      bool isPositive = false);
        Real dx(Size i) const { return dx_[i]; }
        const TimeGrid& timeGrid() const { return timeGrid_; }

        Size size(Size i) const;
        Real underlying(Size i, Size index) const;
        Size descendant(Size i, Size index, Size branch) const;
        Real probability(Size i, Size index, Size branch) const;

      protected:
        std::vector<Branching> branchings_;
        Real x0_;
        std::vector<Real> dx_;
        TimeGrid timeGrid_;

      private:
        /* Branching scheme for a trinomial node.  Each node has three
           descendants, with the middle branch linked to the node
           which is closest to the expectation of the variable. */
        class Branching {
          public:
            Branching();
            Size descendant(Size index, Size branch) const;
            Real probability(Size index, Size branch) const;
            Size size() const;
            Integer jMin() const;
            Integer jMax() const;
            void add(Integer k, Real p1, Real p2, Real p3);
          private:
            std::vector<Integer> k_;
            std::vector<std::vector<Real> > probs_;
            Integer kMin_, jMin_, kMax_, jMax_;
        };
    };

    // inline definitions

    inline Size TrinomialTree::size(Size i) const {
        return i==0 ? 1 : branchings_[i-1].size();
    }

    inline Real TrinomialTree::underlying(Size i, Size index) const {
        if (i==0)
            return x0_;
        else
            return x0_ + (branchings_[i-1].jMin() +
                          static_cast<Real>(index))*dx(i);
    }

    inline Size TrinomialTree::descendant(Size i, Size index,
                                          Size branch) const {
        return branchings_[i].descendant(index, branch);
    }

    inline Real TrinomialTree::probability(Size i, Size j, Size b) const {
        return branchings_[i].probability(j, b);
    }

    inline TrinomialTree::Branching::Branching()
    : probs_(3), kMin_(QL_MAX_INTEGER), jMin_(QL_MAX_INTEGER),
                 kMax_(QL_MIN_INTEGER), jMax_(QL_MIN_INTEGER) {}

    inline Size TrinomialTree::Branching::descendant(Size index,
                                                     Size branch) const {
        return k_[index] - jMin_ - 1 + branch;
    }

    inline Real TrinomialTree::Branching::probability(Size index,
                                                      Size branch) const {
        return probs_[branch][index];
    }

    inline Size TrinomialTree::Branching::size() const {
        return jMax_ - jMin_ + 1;
    }

    inline Integer TrinomialTree::Branching::jMin() const {
        return jMin_;
    }

    inline Integer TrinomialTree::Branching::jMax() const {
        return jMax_;
    }

    inline void TrinomialTree::Branching::add(Integer k,
                                              Real p1, Real p2, Real p3) {
        // store
        k_.push_back(k);
        probs_[0].push_back(p1);
        probs_[1].push_back(p2);
        probs_[2].push_back(p3);
        // maintain invariants
        kMin_ = std::min(kMin_, k);
        jMin_ = kMin_ - 1;
        kMax_ = std::max(kMax_, k);
        jMax_ = kMax_ + 1;
    }

}


#endif