/usr/include/ql/methods/lattices/lattice2d.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file lattice2d.hpp
\brief Two-dimensional lattice class
*/
#ifndef quantlib_tree_lattice_2d_hpp
#define quantlib_tree_lattice_2d_hpp
#include <ql/methods/lattices/lattice.hpp>
#include <ql/methods/lattices/trinomialtree.hpp>
#include <ql/math/matrix.hpp>
namespace QuantLib {
//! Two-dimensional tree-based lattice.
/*! This lattice is based on two trinomial trees and primarily used
for the G2 short-rate model.
\ingroup lattices
*/
template <class Impl, class T = TrinomialTree>
class TreeLattice2D : public TreeLattice<Impl> {
public:
TreeLattice2D(const boost::shared_ptr<T>& tree1,
const boost::shared_ptr<T>& tree2,
Real correlation);
Size size(Size i) const;
Size descendant(Size i, Size index, Size branch) const;
Real probability(Size i, Size index, Size branch) const;
protected:
boost::shared_ptr<T> tree1_, tree2_;
// smelly
Disposable<Array> grid(Time) const { QL_FAIL("not implemented"); }
private:
Matrix m_;
Real rho_;
};
// inline definitions
template <class Impl, class T>
inline Size TreeLattice2D<Impl,T>::size(Size i) const {
return tree1_->size(i)*tree2_->size(i);
}
// template definitions
template <class Impl, class T>
TreeLattice2D<Impl,T>::TreeLattice2D(const boost::shared_ptr<T>& tree1,
const boost::shared_ptr<T>& tree2,
Real correlation)
: TreeLattice<Impl>(tree1->timeGrid(), T::branches*T::branches),
tree1_(tree1), tree2_(tree2), m_(T::branches,T::branches),
rho_(std::fabs(correlation)) {
// what happens here?
if (correlation < 0.0 && T::branches == 3) {
m_[0][0] = -1.0;
m_[0][1] = -4.0;
m_[0][2] = 5.0;
m_[1][0] = -4.0;
m_[1][1] = 8.0;
m_[1][2] = -4.0;
m_[2][0] = 5.0;
m_[2][1] = -4.0;
m_[2][2] = -1.0;
} else {
m_[0][0] = 5.0;
m_[0][1] = -4.0;
m_[0][2] = -1.0;
m_[1][0] = -4.0;
m_[1][1] = 8.0;
m_[1][2] = -4.0;
m_[2][0] = -1.0;
m_[2][1] = -4.0;
m_[2][2] = 5.0;
}
}
template <class Impl, class T>
Size TreeLattice2D<Impl,T>::descendant(Size i, Size index,
Size branch) const {
Size modulo = tree1_->size(i);
Size index1 = index % modulo;
Size index2 = index / modulo;
Size branch1 = branch % T::branches;
Size branch2 = branch / T::branches;
modulo = tree1_->size(i+1);
return tree1_->descendant(i, index1, branch1) +
tree2_->descendant(i, index2, branch2)*modulo;
}
template <class Impl, class T>
Real TreeLattice2D<Impl,T>::probability(Size i, Size index,
Size branch) const {
Size modulo = tree1_->size(i);
Size index1 = index % modulo;
Size index2 = index / modulo;
Size branch1 = branch % T::branches;
Size branch2 = branch / T::branches;
Real prob1 = tree1_->probability(i, index1, branch1);
Real prob2 = tree2_->probability(i, index2, branch2);
// does the 36 below depend on T::branches?
return prob1*prob2 + rho_*(m_[branch1][branch2])/36.0;
}
}
#endif
|