This file is indexed.

/usr/include/ql/methods/lattices/lattice2d.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
 Copyright (C) 2005 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file lattice2d.hpp
    \brief Two-dimensional lattice class
*/

#ifndef quantlib_tree_lattice_2d_hpp
#define quantlib_tree_lattice_2d_hpp

#include <ql/methods/lattices/lattice.hpp>
#include <ql/methods/lattices/trinomialtree.hpp>
#include <ql/math/matrix.hpp>

namespace QuantLib {

    //! Two-dimensional tree-based lattice.
    /*! This lattice is based on two trinomial trees and primarily used
        for the G2 short-rate model.

        \ingroup lattices
    */
    template <class Impl, class T = TrinomialTree>
    class TreeLattice2D : public TreeLattice<Impl> {
      public:
        TreeLattice2D(const boost::shared_ptr<T>& tree1,
                      const boost::shared_ptr<T>& tree2,
                      Real correlation);

        Size size(Size i) const;
        Size descendant(Size i, Size index, Size branch) const;
        Real probability(Size i, Size index, Size branch) const;
      protected:
        boost::shared_ptr<T> tree1_, tree2_;
        // smelly
        Disposable<Array> grid(Time) const { QL_FAIL("not implemented"); }
      private:
        Matrix m_;
        Real rho_;
    };


    // inline definitions

    template <class Impl, class T>
    inline Size TreeLattice2D<Impl,T>::size(Size i) const {
        return tree1_->size(i)*tree2_->size(i);
    }


    // template definitions

    template <class Impl, class T>
    TreeLattice2D<Impl,T>::TreeLattice2D(const boost::shared_ptr<T>& tree1,
                                         const boost::shared_ptr<T>& tree2,
                                         Real correlation)
    : TreeLattice<Impl>(tree1->timeGrid(), T::branches*T::branches),
      tree1_(tree1), tree2_(tree2), m_(T::branches,T::branches),
      rho_(std::fabs(correlation)) {

        // what happens here?
        if (correlation < 0.0 && T::branches == 3) {
            m_[0][0] = -1.0;
            m_[0][1] = -4.0;
            m_[0][2] =  5.0;
            m_[1][0] = -4.0;
            m_[1][1] =  8.0;
            m_[1][2] = -4.0;
            m_[2][0] =  5.0;
            m_[2][1] = -4.0;
            m_[2][2] = -1.0;
        } else {
            m_[0][0] =  5.0;
            m_[0][1] = -4.0;
            m_[0][2] = -1.0;
            m_[1][0] = -4.0;
            m_[1][1] =  8.0;
            m_[1][2] = -4.0;
            m_[2][0] = -1.0;
            m_[2][1] = -4.0;
            m_[2][2] =  5.0;
        }
    }


    template <class Impl, class T>
    Size TreeLattice2D<Impl,T>::descendant(Size i, Size index,
                                           Size branch) const {
        Size modulo = tree1_->size(i);

        Size index1 = index % modulo;
        Size index2 = index / modulo;
        Size branch1 = branch % T::branches;
        Size branch2 = branch / T::branches;

        modulo = tree1_->size(i+1);
        return tree1_->descendant(i, index1, branch1) +
            tree2_->descendant(i, index2, branch2)*modulo;
    }

    template <class Impl, class T>
    Real TreeLattice2D<Impl,T>::probability(Size i, Size index,
                                            Size branch) const {
        Size modulo = tree1_->size(i);

        Size index1 = index % modulo;
        Size index2 = index / modulo;
        Size branch1 = branch % T::branches;
        Size branch2 = branch / T::branches;

        Real prob1 = tree1_->probability(i, index1, branch1);
        Real prob2 = tree2_->probability(i, index2, branch2);
        // does the 36 below depend on T::branches?
        return prob1*prob2 + rho_*(m_[branch1][branch2])/36.0;
    }

}


#endif