This file is indexed.

/usr/include/ql/math/randomnumbers/faurersg.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004 Ferdinando Ametrano
 Copyright (C) 2004 Gianni Piolanti

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file faurersg.hpp
    \brief Faure low-discrepancy sequence generator
*/

#ifndef quantlib_faure_ld_rsg_h
#define quantlib_faure_ld_rsg_h

#include <ql/math/matrix.hpp>
#include <ql/methods/montecarlo/sample.hpp>
#include <vector>


namespace QuantLib {

    //! Faure low-discrepancy sequence generator
    /*! It is based on existing Fortran and C algorithms to calculate pascal
        matrix and gray transforms.
        -# E. Thiemard Economic generation of low-discrepancy sequences with
           a b-ary gray code.
        -# Algorithms 659, 647. http://www.netlib.org/toms/647,
           http://www.netlib.org/toms/659

        \test the correctness of the returned values is tested by
              reproducing known good values.
    */
    class FaureRsg {
      public:
        typedef Sample<std::vector<Real> > sample_type;
        FaureRsg(Size dimensionality);
        const std::vector<long int>& nextIntSequence() const {
            generateNextIntSequence();
            return integerSequence_;
        }
        const std::vector<long int>& lastIntSequence() const {
            return integerSequence_;
        }
        const sample_type& nextSequence() const {
            generateNextIntSequence();
            for (Size i=0; i<dimensionality_; i++)
                sequence_.value[i] = integerSequence_[i]/normalizationFactor_;
            return sequence_;
        }
        const sample_type& lastSequence() const { return sequence_; }
        Size dimension() const { return dimensionality_; }
      private:
        void generateNextIntSequence() const;
        Size dimensionality_;
        // mutable unsigned long sequenceCounter_;
        mutable sample_type sequence_;
        mutable std::vector<long int> integerSequence_;
        mutable std::vector<long int> bary_;
        mutable std::vector<std::vector<long int> > gray_;
        Size base_, mbit_;
        std::vector<std::vector<long int> > powBase_;
        std::vector<long int> addOne_;
        std::vector<std::vector<std::vector<long int> > > pascal3D;
        double normalizationFactor_;
    };

}

#endif