/usr/include/ql/math/optimization/problem.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Ferdinando Ametrano
Copyright (C) 2007 François du Vignaud
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file problem.hpp
\brief Abstract optimization problem class
*/
#ifndef quantlib_optimization_problem_h
#define quantlib_optimization_problem_h
#include <ql/math/optimization/method.hpp>
#include <ql/math/optimization/costfunction.hpp>
namespace QuantLib {
class Constraint;
//! Constrained optimization problem
class Problem {
public:
//! default constructor
Problem(CostFunction& costFunction,
Constraint& constraint,
const Array& initialValue = Array())
: costFunction_(costFunction), constraint_(constraint),
currentValue_(initialValue) {}
/*! \warning it does not reset the current minumum to any initial value
*/
void reset();
//! call cost function computation and increment evaluation counter
Real value(const Array& x);
//! call cost values computation and increment evaluation counter
Disposable<Array> values(const Array& x);
//! call cost function gradient computation and increment
// evaluation counter
void gradient(Array& grad_f,
const Array& x);
//! call cost function computation and it gradient
Real valueAndGradient(Array& grad_f,
const Array& x);
//! Constraint
Constraint& constraint() const { return constraint_; }
//! Cost function
CostFunction& costFunction() const { return costFunction_; }
void setCurrentValue(const Array& currentValue) {
currentValue_=currentValue;
}
//! current value of the local minimum
const Array& currentValue() const { return currentValue_; }
void setFunctionValue(Real functionValue) {
functionValue_=functionValue;
}
//! value of cost function
Real functionValue() const { return functionValue_; }
void setGradientNormValue(Real squaredNorm) {
squaredNorm_=squaredNorm;
}
//! value of cost function gradient norm
Real gradientNormValue() const { return squaredNorm_; }
//! number of evaluation of cost function
Integer functionEvaluation() const { return functionEvaluation_; }
//! number of evaluation of cost function gradient
Integer gradientEvaluation() const { return gradientEvaluation_; }
protected:
//! Unconstrained cost function
CostFunction& costFunction_;
//! Constraint
Constraint& constraint_;
//! current value of the local minimum
Array currentValue_;
//! function and gradient norm values at the curentValue_ (i.e. the last step)
Real functionValue_, squaredNorm_;
//! number of evaluation of cost function and its gradient
Integer functionEvaluation_, gradientEvaluation_;
};
// inline definitions
inline Real Problem::value(const Array& x) {
++functionEvaluation_;
return costFunction_.value(x);
}
inline Disposable<Array> Problem::values(const Array& x) {
++functionEvaluation_;
return costFunction_.values(x);
}
inline void Problem::gradient(Array& grad_f,
const Array& x) {
++gradientEvaluation_;
costFunction_.gradient(grad_f, x);
}
inline Real Problem::valueAndGradient(Array& grad_f,
const Array& x) {
++functionEvaluation_;
++gradientEvaluation_;
return costFunction_.valueAndGradient(grad_f, x);
}
inline void Problem::reset() {
functionEvaluation_ = gradientEvaluation_ = 0;
functionValue_ = squaredNorm_ = Null<Real>();
}
}
#endif
|