This file is indexed.

/usr/include/ql/math/linearleastsquaresregression.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Dirk Eddelbuettel
 Copyright (C) 2006, 2009 Klaus Spanderen
 Copyright (C) 2010 Kakhkhor Abdijalilov

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file linearleastsquaresregression.hpp
    \brief general linear least square regression
*/

#ifndef quantlib_linear_least_squares_regression_hpp
#define quantlib_linear_least_squares_regression_hpp

#include <ql/qldefines.hpp>
#include <ql/math/matrixutilities/svd.hpp>
#include <ql/math/array.hpp>
#include <ql/math/functional.hpp>
#include <boost/function.hpp>
#include <vector>

namespace QuantLib {

    //! general linear least squares regression
    /*! References:
       "Numerical Recipes in C", 2nd edition,
        Press, Teukolsky, Vetterling, Flannery,

        \test the correctness of the returned values is tested by
              checking their properties.
    */
    template <class ArgumentType = Real>
    class LinearLeastSquaresRegression {
      public:
        LinearLeastSquaresRegression(
            const std::vector<ArgumentType> & x,
            const std::vector<Real> &         y,
            const std::vector<boost::function1<Real, ArgumentType> > & v);

        const Array& coefficients()   const { return a_; }
        const Array& residuals()      const { return residuals_; }

        //! standard parameter errors as given by Excel, R etc.
        const Array& standardErrors() const { return standardErrors_; }
        //! modeling uncertainty as definied in Numerical Recipes
        const Array& error()          const { return err_;}

#ifndef QL_DISABLE_DEPRECATED
        const Array& a() const     { return a_;  }
#endif

      private:
        Array a_, err_, residuals_, standardErrors_;
    };

    //! linear regression y_i = a_0 + a_1*x_0 +..+a_n*x_{n-1} + eps
    class LinearRegression {
      public:
        //! one dimensional linear regression
        LinearRegression(const std::vector<Real>& x,
                         const std::vector<Real>& y);

        //! multi dimensional linear regression
        LinearRegression(const std::vector<std::vector<Real> >& x,
                         const std::vector<Real>& y);

        //! returns paramters {a_0, a_1, ..., a_n}
        const Array& coefficients()   const { return reg_.coefficients(); }

        const Array& residuals()      const { return reg_.residuals(); }
        const Array& standardErrors() const { return reg_.standardErrors(); }

      private:
        LinearLeastSquaresRegression<std::vector<Real> > reg_;
    };

    template <class ArgumentType> inline
    LinearLeastSquaresRegression<ArgumentType>::LinearLeastSquaresRegression(
        const std::vector<ArgumentType> & x,
        const std::vector<Real> &         y,
        const std::vector<boost::function1<Real, ArgumentType> > & v)
    : a_             (v.size(), 0.0),
      err_           (v.size(), 0.0),
      residuals_     (x.size()),
      standardErrors_(v.size()) {

        QL_REQUIRE(x.size() == y.size(),
                   "sample set need to be of the same size");
        QL_REQUIRE(x.size() >= v.size(), "sample set is too small");

        Size i;
        const Size n = x.size();
        const Size m = v.size();

        Matrix A(n, m);
        for (i=0; i<m; ++i)
            std::transform(x.begin(), x.end(), A.column_begin(i), v[i]);

        const SVD svd(A);
        const Matrix& V = svd.V();
        const Matrix& U = svd.U();
        const Array&  w = svd.singularValues();

        for (i=0; i<svd.rank(); ++i) {
            const Real u = std::inner_product(U.column_begin(i),
                                              U.column_end(i),
                                              y.begin(), 0.0)/w[i];

            for (Size j=0; j<m; ++j) {
                a_[j]+=u*V[j][i];
                err_[j]+=V[j][i]*V[j][i]/(w[i]*w[i]);
            }
        }

        err_      = Sqrt(err_);
        residuals_= A*a_-Array(y.begin(), y.end());

        const Real chiSq
            = std::inner_product(residuals_.begin(), residuals_.end(),
                                 residuals_.begin(), 0.0);
        std::transform(err_.begin(), err_.end(), standardErrors_.begin(),
                       std::bind1st(std::multiplies<Real>(),
                                    std::sqrt(chiSq/(n-2))));
    }

    namespace details {
        class LinearFct : public std::unary_function<Real, std::vector<Real> >{
          public:
            LinearFct(Size i) : i_(i) {}

            inline Real operator()(const std::vector<Real>& x) const {
                return x[i_];
            }

          private:
            const Size i_;
        };

        inline std::vector<boost::function1<Real, std::vector<Real> > >
        linearFcts(Size dims) {
            std::vector<boost::function1<Real, std::vector<Real> > > retVal;
            retVal.push_back(constant<std::vector<Real>, Real>(1.0));

            for (Size i=0; i < dims; ++i) {
                retVal.push_back(LinearFct(i));
            }

            return retVal;
        }

        inline std::vector<std::vector<Real> > argumentWrapper(
            const std::vector<Real>& x) {
            std::vector<std::vector<Real> > retVal;
            for (std::vector<Real>::const_iterator iter = x.begin();
                 iter != x.end(); ++iter) {
                retVal.push_back(std::vector<Real>(1, *iter));
            }

            return retVal;
        }
    }

    inline LinearRegression::LinearRegression(
        const std::vector<std::vector<Real> >& x,
        const std::vector<Real>& y)
    : reg_(x, y, details::linearFcts(x[0].size())) {
#ifdef QL_EXTRA_SAFETY_CHECKS
        for (Size i=1; i < x.size(); ++i) {
            QL_REQUIRE(x[i-1].size() == x[i].size(),
                        "inconsistent sample size");
        }
#endif        
    }

    inline LinearRegression::LinearRegression(
        const std::vector<Real>& x,
        const std::vector<Real>& y)
    : reg_(details::argumentWrapper(x), y, details::linearFcts(1)) { }
}
#endif