/usr/include/ql/math/interpolations/kernelinterpolation.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Dimitri Reiswich
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_kernel_interpolation_hpp
#define quantlib_kernel_interpolation_hpp
#include <ql/math/interpolation.hpp>
#include <ql/math/matrixutilities/qrdecomposition.hpp>
/*! \file kernelinterpolation.hpp
\brief Kernel interpolation
*/
namespace QuantLib {
namespace detail {
template <class I1, class I2, class Kernel>
class KernelInterpolationImpl
: public Interpolation::templateImpl<I1,I2> {
public:
KernelInterpolationImpl(const I1& xBegin, const I1& xEnd,
const I2& yBegin,
const Kernel& kernel)
: Interpolation::templateImpl<I1,I2>(xBegin, xEnd, yBegin),
xSize_(Size(xEnd-xBegin)),invPrec_(1.0e-7),
M_(xSize_,xSize_), alphaVec_(xSize_), yVec_(xSize_),
kernel_(kernel) {}
void update() {
updateAlphaVec();
}
Real value(Real x) const {
Real res=0.0;
for( Size i=0; i< xSize_;++i){
res+=alphaVec_[i]*kernelAbs(x,this->xBegin_[i]);
}
return res/gammaFunc(x);
}
Real primitive(Real) const {
QL_FAIL("Primitive calculation not implemented "
"for kernel interpolation");
}
Real derivative(Real) const {
QL_FAIL("First derivative calculation not implemented "
"for kernel interpolation");
}
Real secondDerivative(Real) const {
QL_FAIL("Second derivative calculation not implemented "
"for kernel interpolation");
}
// the calculation will solve y=M*a for a. Due to
// singularity or rounding errors the recalculation
// M*a may not give y. Here, a failure will be thrown if
// |M*a-y|>=invPrec_
void setInverseResultPrecision(Real invPrec){
invPrec_=invPrec;
}
private:
Real kernelAbs(Real x1, Real x2)const{
return kernel_(std::fabs(x1-x2));
}
Real gammaFunc(Real x)const{
Real res=0.0;
for(Size i=0; i< xSize_;++i){
res+=kernelAbs(x,this->xBegin_[i]);
}
return res;
}
void updateAlphaVec(){
// Function calculates the alpha vector with given
// fixed pillars+values
// Write Matrix M
Real tmp=0.0;
for(Size rowIt=0; rowIt<xSize_;++rowIt){
yVec_[rowIt]=this->yBegin_[rowIt];
tmp=1.0/gammaFunc(this->xBegin_[rowIt]);
for(Size colIt=0; colIt<xSize_;++colIt){
M_[rowIt][colIt]=kernelAbs(this->xBegin_[rowIt],
this->xBegin_[colIt])*tmp;
}
}
// Solve y=M*\alpha for \alpha
alphaVec_ = qrSolve(M_, yVec_);
// check if inversion worked up to a reasonable precision.
// I've chosen not to check determinant(M_)!=0 before solving
Array diffVec=Abs(M_*alphaVec_ - yVec_);
for (Size i=0; i<diffVec.size(); ++i) {
QL_REQUIRE(diffVec[i] < invPrec_,
"Inversion failed in 1d kernel interpolation");
}
}
Size xSize_;
Real invPrec_;
Matrix M_;
Array alphaVec_,yVec_;
Kernel kernel_;
};
} // end namespace detail
//! Kernel interpolation between discrete points
/*! Implementation of the kernel interpolation approach, which can
be found in "Foreign Exchange Risk" by Hakala, Wystup page
256.
The kernel in the implementation is kept general, although a Gaussian
is considered in the cited text.
*/
class KernelInterpolation : public Interpolation {
public:
/*! \pre the \f$ x \f$ values must be sorted.
\pre kernel needs a Real operator()(Real x) implementation
*/
template <class I1, class I2, class Kernel>
KernelInterpolation(const I1& xBegin, const I1& xEnd,
const I2& yBegin,
const Kernel& kernel) {
impl_ = boost::shared_ptr<Interpolation::Impl>(new
detail::KernelInterpolationImpl<I1,I2,Kernel>(xBegin, xEnd,
yBegin, kernel));
impl_->update();
}
};
}
#endif
|