/usr/include/ql/math/interpolations/bicubicsplineinterpolation.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2004 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file bicubicsplineinterpolation.hpp
\brief bicubic spline interpolation between discrete points
*/
#ifndef quantlib_bicubic_spline_interpolation_hpp
#define quantlib_bicubic_spline_interpolation_hpp
#include <ql/math/interpolations/interpolation2d.hpp>
#include <ql/math/interpolations/cubicinterpolation.hpp>
namespace QuantLib {
namespace detail {
class BicubicSplineDerivatives {
public:
virtual Real derivativeX(Real x, Real y) const = 0;
virtual Real derivativeY(Real x, Real y) const = 0;
virtual Real derivativeXY(Real x, Real y) const = 0;
virtual Real secondDerivativeX(Real x, Real y) const = 0;
virtual Real secondDerivativeY(Real x, Real y) const = 0;
};
template <class I1, class I2, class M>
class BicubicSplineImpl
: public Interpolation2D::templateImpl<I1,I2,M>,
public BicubicSplineDerivatives {
public:
BicubicSplineImpl(const I1& xBegin, const I1& xEnd,
const I2& yBegin, const I2& yEnd,
const M& zData)
: Interpolation2D::templateImpl<I1,I2,M>(xBegin,xEnd,
yBegin,yEnd,
zData) {
calculate();
}
void calculate() {
splines_.reserve(this->zData_.rows());
for (Size i=0; i<(this->zData_.rows()); ++i)
splines_.push_back(CubicInterpolation(
this->xBegin_, this->xEnd_,
this->zData_.row_begin(i),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0));
}
Real value(Real x, Real y) const {
std::vector<Real> section(splines_.size());
for (Size i=0; i<splines_.size(); i++)
section[i]=splines_[i](x,true);
CubicInterpolation spline(this->yBegin_, this->yEnd_,
section.begin(),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0);
return spline(y,true);
}
Real derivativeX(Real x, Real y) const {
std::vector<Real> section(this->zData_.columns());
for (Size i=0; i < section.size(); ++i) {
section[i] = value(this->xBegin_[i], y);
}
return CubicInterpolation(
this->xBegin_, this->xEnd_,
section.begin(),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0).derivative(x);
}
Real secondDerivativeX(Real x, Real y) const {
std::vector<Real> section(this->zData_.columns());
for (Size i=0; i < section.size(); ++i) {
section[i] = value(this->xBegin_[i], y);
}
return CubicInterpolation(
this->xBegin_, this->xEnd_,
section.begin(),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0)
.secondDerivative(x);
}
Real derivativeY(Real x, Real y) const {
std::vector<Real> section(splines_.size());
for (Size i=0; i<splines_.size(); i++)
section[i]=splines_[i](x,true);
return CubicInterpolation(
this->yBegin_, this->yEnd_,
section.begin(),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0).derivative(y);
}
Real secondDerivativeY(Real x, Real y) const {
std::vector<Real> section(splines_.size());
for (Size i=0; i<splines_.size(); i++)
section[i]=splines_[i](x,true);
return CubicInterpolation(
this->yBegin_, this->yEnd_,
section.begin(),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0)
.secondDerivative(y);
}
Real derivativeXY(Real x, Real y) const {
std::vector<Real> section(this->zData_.columns());
for (Size i=0; i < section.size(); ++i) {
section[i] = derivativeY(this->xBegin_[i], y);
}
return CubicInterpolation(
this->xBegin_, this->xEnd_,
section.begin(),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0).derivative(x);
}
private:
std::vector<Interpolation> splines_;
};
}
//! bicubic-spline interpolation between discrete points
/*! \todo revise end conditions */
class BicubicSpline : public Interpolation2D {
public:
/*! \pre the \f$ x \f$ and \f$ y \f$ values must be sorted. */
template <class I1, class I2, class M>
BicubicSpline(const I1& xBegin, const I1& xEnd,
const I2& yBegin, const I2& yEnd,
const M& zData) {
impl_ = boost::shared_ptr<Interpolation2D::Impl>(
new detail::BicubicSplineImpl<I1,I2,M>(xBegin, xEnd,
yBegin, yEnd, zData));
}
Real derivativeX(Real x, Real y) const {
return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
(impl_)->derivativeX(x, y);
}
Real derivativeY(Real x, Real y) const {
return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
(impl_)->derivativeY(x, y);
}
Real secondDerivativeX(Real x, Real y) const {
return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
(impl_)->secondDerivativeX(x, y);
}
Real secondDerivativeY(Real x, Real y) const {
return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
(impl_)->secondDerivativeY(x, y);
}
Real derivativeXY(Real x, Real y) const {
return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
(impl_)->derivativeXY(x, y);
}
};
//! bicubic-spline-interpolation factory
class Bicubic {
public:
template <class I1, class I2, class M>
Interpolation2D interpolate(const I1& xBegin, const I1& xEnd,
const I2& yBegin, const I2& yEnd,
const M& z) const {
return BicubicSpline(xBegin,xEnd,yBegin,yEnd,z);
}
};
}
#endif
|