This file is indexed.

/usr/include/ql/math/interpolations/bicubicsplineinterpolation.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2004 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file bicubicsplineinterpolation.hpp
    \brief bicubic spline interpolation between discrete points
*/

#ifndef quantlib_bicubic_spline_interpolation_hpp
#define quantlib_bicubic_spline_interpolation_hpp

#include <ql/math/interpolations/interpolation2d.hpp>
#include <ql/math/interpolations/cubicinterpolation.hpp>

namespace QuantLib {

    namespace detail {

        class BicubicSplineDerivatives {
          public:
            virtual Real derivativeX(Real x, Real y) const = 0;
            virtual Real derivativeY(Real x, Real y) const = 0;
            virtual Real derivativeXY(Real x, Real y) const = 0;
            virtual Real secondDerivativeX(Real x, Real y) const = 0;
            virtual Real secondDerivativeY(Real x, Real y) const = 0;
        };
    
        template <class I1, class I2, class M>
        class BicubicSplineImpl
            : public Interpolation2D::templateImpl<I1,I2,M>,
              public BicubicSplineDerivatives {
          public:
            BicubicSplineImpl(const I1& xBegin, const I1& xEnd,
                              const I2& yBegin, const I2& yEnd,
                              const M& zData)
            : Interpolation2D::templateImpl<I1,I2,M>(xBegin,xEnd,
                                                     yBegin,yEnd,
                                                     zData) {
                calculate();
            }
            void calculate() {
                splines_.reserve(this->zData_.rows());
                for (Size i=0; i<(this->zData_.rows()); ++i)
                    splines_.push_back(CubicInterpolation(
                                this->xBegin_, this->xEnd_,
                                this->zData_.row_begin(i),
                                CubicInterpolation::Spline, false,
                                CubicInterpolation::SecondDerivative, 0.0,
                                CubicInterpolation::SecondDerivative, 0.0));
            }
            Real value(Real x, Real y) const {
                std::vector<Real> section(splines_.size());
                for (Size i=0; i<splines_.size(); i++)
                    section[i]=splines_[i](x,true);

                CubicInterpolation spline(this->yBegin_, this->yEnd_,
                                          section.begin(),
                                          CubicInterpolation::Spline, false,
                                          CubicInterpolation::SecondDerivative, 0.0,
                                          CubicInterpolation::SecondDerivative, 0.0);
                return spline(y,true);
            }
            
            Real derivativeX(Real x, Real y) const {
                std::vector<Real> section(this->zData_.columns());
                for (Size i=0; i < section.size(); ++i) {
                    section[i] = value(this->xBegin_[i], y);
                }
                
                return CubicInterpolation(
                    this->xBegin_, this->xEnd_,
                    section.begin(),
                    CubicInterpolation::Spline, false,
                    CubicInterpolation::SecondDerivative, 0.0,
                    CubicInterpolation::SecondDerivative, 0.0).derivative(x);
            }
            
            Real secondDerivativeX(Real x, Real y) const {
                std::vector<Real> section(this->zData_.columns());
                for (Size i=0; i < section.size(); ++i) {
                    section[i] = value(this->xBegin_[i], y);
                }
                
                return CubicInterpolation(
                    this->xBegin_, this->xEnd_,
                    section.begin(),
                    CubicInterpolation::Spline, false,
                    CubicInterpolation::SecondDerivative, 0.0,
                    CubicInterpolation::SecondDerivative, 0.0)
                                                          .secondDerivative(x);
            }

            Real derivativeY(Real x, Real y) const {
                std::vector<Real> section(splines_.size());
                for (Size i=0; i<splines_.size(); i++)
                    section[i]=splines_[i](x,true);

                return CubicInterpolation(
                    this->yBegin_, this->yEnd_,
                    section.begin(),
                    CubicInterpolation::Spline, false,
                    CubicInterpolation::SecondDerivative, 0.0,
                    CubicInterpolation::SecondDerivative, 0.0).derivative(y);
            }

            Real secondDerivativeY(Real x, Real y) const {
                std::vector<Real> section(splines_.size());
                for (Size i=0; i<splines_.size(); i++)
                    section[i]=splines_[i](x,true);

                return CubicInterpolation(
                    this->yBegin_, this->yEnd_,
                    section.begin(),
                    CubicInterpolation::Spline, false,
                    CubicInterpolation::SecondDerivative, 0.0,
                    CubicInterpolation::SecondDerivative, 0.0)
                                                        .secondDerivative(y);
            }
            
            Real derivativeXY(Real x, Real y) const {
                std::vector<Real> section(this->zData_.columns());
                for (Size i=0; i < section.size(); ++i) {
                    section[i] = derivativeY(this->xBegin_[i], y);
                }
                
                return CubicInterpolation(
                    this->xBegin_, this->xEnd_,
                    section.begin(),
                    CubicInterpolation::Spline, false,
                    CubicInterpolation::SecondDerivative, 0.0,
                    CubicInterpolation::SecondDerivative, 0.0).derivative(x);                
            }
          
          private:
            std::vector<Interpolation> splines_;
        };

    }

    //! bicubic-spline interpolation between discrete points
    /*! \todo revise end conditions */
    class BicubicSpline : public Interpolation2D {
      public:
        /*! \pre the \f$ x \f$ and \f$ y \f$ values must be sorted. */
        template <class I1, class I2, class M>
        BicubicSpline(const I1& xBegin, const I1& xEnd,
                      const I2& yBegin, const I2& yEnd,
                      const M& zData) {
            impl_ = boost::shared_ptr<Interpolation2D::Impl>(
                  new detail::BicubicSplineImpl<I1,I2,M>(xBegin, xEnd,
                                                         yBegin, yEnd, zData));
        }
        
        Real derivativeX(Real x, Real y) const {
            return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
                    (impl_)->derivativeX(x, y);
        }
        Real derivativeY(Real x, Real y) const {
            return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
                    (impl_)->derivativeY(x, y);
        }
        Real secondDerivativeX(Real x, Real y) const {
            return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
                    (impl_)->secondDerivativeX(x, y);
        }
        Real secondDerivativeY(Real x, Real y) const {
            return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
                    (impl_)->secondDerivativeY(x, y);
        }
        
        Real derivativeXY(Real x, Real y) const {
            return boost::dynamic_pointer_cast<detail::BicubicSplineDerivatives>
                    (impl_)->derivativeXY(x, y);            
        }
    };

    //! bicubic-spline-interpolation factory
    class Bicubic {
      public:
        template <class I1, class I2, class M>
        Interpolation2D interpolate(const I1& xBegin, const I1& xEnd,
                                    const I2& yBegin, const I2& yEnd,
                                    const M& z) const {
            return BicubicSpline(xBegin,xEnd,yBegin,yEnd,z);
        }
    };

}

#endif