/usr/include/ql/math/functional.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file functional.hpp
\brief functionals and combinators not included in the STL
*/
#ifndef quantlib_functional_hpp
#define quantlib_functional_hpp
#include <ql/types.hpp>
#include <cmath>
#include <functional>
namespace QuantLib {
// functions
template <class T, class U>
class constant : public std::unary_function<T,U> {
public:
constant(const U& u) : u_(u) {}
U operator()(const T&) const { return u_; }
private:
U u_;
};
template <class T>
class identity : public std::unary_function<T,T> {
public:
T operator()(const T& t) const { return t; }
};
template <class T>
class square : public std::unary_function<T,T> {
public:
T operator()(const T& t) const { return t*t; }
};
template <class T>
class cube : public std::unary_function<T,T> {
public:
T operator()(const T& t) const { return t*t*t; }
};
template <class T>
class fourth_power : public std::unary_function<T,T> {
public:
T operator()(const T& t) const { T t2 = t*t; return t2*t2; }
};
// predicates
class everywhere : public constant<Real,bool> {
public:
everywhere() : constant<Real,bool>(true) {}
};
class nowhere : public constant<Real,bool> {
public:
nowhere() : constant<Real,bool>(false) {}
};
template <class T>
class equal_within : public std::binary_function<T, T, bool> {
public:
equal_within(const T& eps) : eps_(eps) {}
bool operator()(const T a, const T b) const {
return std::fabs(a-b) <= eps_;
}
private:
const T eps_;
};
// combinators
template <class F, class R>
class clipped_function {
public:
typedef typename F::argument_type argument_type;
typedef typename F::result_type result_type;
clipped_function(const F& f, const R& r) : f_(f), r_(r) {}
result_type operator()(const argument_type& x) const {
return r_(x) ? f_(x) : result_type();
}
private:
F f_;
R r_;
};
template <class F, class R>
clipped_function<F,R> clip(const F& f, const R& r) {
return clipped_function<F,R>(f,r);
}
template <class F, class G>
class composed_function {
public:
typedef typename G::argument_type argument_type;
typedef typename F::result_type result_type;
composed_function(const F& f, const G& g) : f_(f), g_(g) {}
result_type operator()(const argument_type& x) const {
return f_(g_(x));
}
private:
F f_;
G g_;
};
template <class F, class G>
composed_function<F,G> compose(const F& f, const G& g) {
return composed_function<F,G>(f,g);
}
template <class F, class G, class H>
class binary_compose3_function :
public std::binary_function<typename G::argument_type,
typename H::argument_type,
typename F::result_type>{
public:
typedef typename G::argument_type first_argument_type;
typedef typename H::argument_type second_argument_type;
typedef typename F::result_type result_type;
binary_compose3_function(const F& f, const G& g, const H& h)
: f_(f), g_(g), h_(h) {}
result_type operator()(const first_argument_type& x,
const second_argument_type& y) const {
return f_(g_(x), h_(y));
}
private:
F f_;
G g_;
H h_;
};
template <class F, class G, class H> binary_compose3_function<F, G, H>
compose3(const F& f, const G& g, const H& h) {
return binary_compose3_function<F, G, H>(f, g, h);
}
}
#endif
|