/usr/include/ql/experimental/variancegamma/variancegammaprocess.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2010 Adrian O' Neill
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file variancegammaprocess.hpp
\brief Variance Gamma stochastic process
*/
#ifndef quantlib_variance_gamma_process_hpp
#define quantlib_variance_gamma_process_hpp
#include <ql/stochasticprocess.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/quote.hpp>
namespace QuantLib {
//! Variance gamma process
/*! This class describes the stochastic volatility
process. With a Brownian motion given by
\f[
db = \theta dt + \sigma dW_t
\f]
then a Variance Gamma process X is defined by evaluating this
Brownian motion at sample times driven by a Gamma process. If T is
the value of a Gamma process with mean 1 and variance rate \f$ \nu
\f$ then the Variance Gamma process is given by
\f[
X(t) = B(T)
\f]
\ingroup processes
*/
class VarianceGammaProcess : public StochasticProcess1D {
public:
VarianceGammaProcess(const Handle<Quote>& s0,
const Handle<YieldTermStructure>& dividendYield,
const Handle<YieldTermStructure>& riskFreeRate,
Real sigma, Real nu, Real theta);
Real x0() const;
Real drift(Time t, Real x) const;
Real diffusion(Time t, Real x) const;
Real sigma() const { return sigma_; }
Real nu() const { return nu_; }
Real theta() const { return theta_; }
const Handle<Quote>& s0() const;
const Handle<YieldTermStructure>& dividendYield() const;
const Handle<YieldTermStructure>& riskFreeRate() const;
private:
Handle<Quote> s0_;
Handle<YieldTermStructure> dividendYield_, riskFreeRate_;
Real sigma_, nu_, theta_;
};
}
#endif
|