This file is indexed.

/usr/include/ql/experimental/mcbasket/mcpathbasketengine.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Andrea Odetti

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file mcpathbasketengine.hpp
    \brief Path-dependent European basket MC engine
*/

#ifndef quantlib_mc_path_basket_engine_hpp
#define quantlib_mc_path_basket_engine_hpp

#include <ql/experimental/mcbasket/pathmultiassetoption.hpp>
#include <ql/experimental/mcbasket/pathpayoff.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/termstructures/yield/impliedtermstructure.hpp>
#include <ql/timegrid.hpp>

namespace QuantLib {

    //! Pricing engine for path dependent basket options using
    //  Monte Carlo simulation
    template <class RNG = PseudoRandom, class S = Statistics>
    class MCPathBasketEngine  : public PathMultiAssetOption::engine,
                                public McSimulation<MultiVariate,RNG,S> {
      public:
        typedef typename McSimulation<MultiVariate,RNG,S>::path_generator_type
                                                          path_generator_type;
        typedef typename McSimulation<MultiVariate,RNG,S>::path_pricer_type
                                                             path_pricer_type;
        typedef typename McSimulation<MultiVariate,RNG,S>::stats_type
                                                                   stats_type;
        // constructor
        MCPathBasketEngine(const boost::shared_ptr<StochasticProcessArray>&,
                           Size timeSteps,
                           Size timeStepsPerYear,
                           bool brownianBridge,
                           bool antitheticVariate,
                           bool controlVariate,
                           Size requiredSamples,
                           Real requiredTolerance,
                           Size maxSamples,
                           BigNatural seed);

        void calculate() const {
            McSimulation<MultiVariate,RNG,S>::calculate(requiredTolerance_,
                                                        requiredSamples_,
                                                        maxSamples_);
            results_.value = this->mcModel_->sampleAccumulator().mean();
            if (RNG::allowsErrorEstimate)
                results_.errorEstimate =
                    this->mcModel_->sampleAccumulator().errorEstimate();
        }

      protected:

        // McSimulation implementation
        TimeGrid timeGrid() const;
        boost::shared_ptr<path_generator_type> pathGenerator() const;
        boost::shared_ptr<path_pricer_type> pathPricer() const;

        // data members
        boost::shared_ptr<StochasticProcessArray> process_;
        Size timeSteps_;
        Size timeStepsPerYear_;
        Size requiredSamples_;
        Size maxSamples_;
        Real requiredTolerance_;
        bool brownianBridge_;
        BigNatural seed_;
    };


    class EuropeanPathMultiPathPricer : public PathPricer<MultiPath> {
      public:
        EuropeanPathMultiPathPricer(boost::shared_ptr<PathPayoff> & payoff,
                                    const std::vector<Size> & timePositions,
                                    const std::vector<Handle<YieldTermStructure> > & forwardTermStructures,
                                    const Array & discounts);
        Real operator()(const MultiPath& multiPath) const;
      private:
        boost::shared_ptr<PathPayoff> payoff_;
        std::vector<Size> timePositions_;
        std::vector<Handle<YieldTermStructure> > forwardTermStructures_;
        Array discounts_;
    };


    // template definitions

    template<class RNG, class S>
    inline MCPathBasketEngine<RNG,S>::MCPathBasketEngine(
             const boost::shared_ptr<StochasticProcessArray>& process,
             Size timeSteps,
             Size timeStepsPerYear,
             bool brownianBridge,
             bool antitheticVariate,
             bool controlVariate,
             Size requiredSamples,
             Real requiredTolerance,
             Size maxSamples,
             BigNatural seed)
    : McSimulation<MultiVariate,RNG,S>(antitheticVariate, controlVariate),
      process_(process), timeSteps_(timeSteps), timeStepsPerYear_(timeStepsPerYear),
      requiredSamples_(requiredSamples), maxSamples_(maxSamples),
      requiredTolerance_(requiredTolerance),
      brownianBridge_(brownianBridge), seed_(seed) {
        QL_REQUIRE(timeSteps != Null<Size>() ||
                   timeStepsPerYear != Null<Size>(),
                   "no time steps provided");
        QL_REQUIRE(timeSteps == Null<Size>() ||
                   timeStepsPerYear == Null<Size>(),
                   "both time steps and time steps per year were provided");
        QL_REQUIRE(timeSteps != 0,
                   "timeSteps must be positive, " << timeSteps <<
                   " not allowed");
        QL_REQUIRE(timeStepsPerYear != 0,
                   "timeStepsPerYear must be positive, "
                   << timeStepsPerYear << " not allowed");
        this->registerWith(process_);
    }


    template<class RNG, class S>
    inline
    boost::shared_ptr<typename MCPathBasketEngine<RNG,S>::path_generator_type>
    MCPathBasketEngine<RNG,S>::pathGenerator() const {

        boost::shared_ptr<PathPayoff> payoff = arguments_.payoff;
        QL_REQUIRE(payoff, "non-basket payoff given");

        Size numAssets = process_->size();

        TimeGrid grid = timeGrid();

        typename RNG::rsg_type gen =
            RNG::make_sequence_generator(numAssets * (grid.size() - 1), seed_);

        return boost::shared_ptr<path_generator_type>(
                         new path_generator_type(process_,
                                                 grid, gen, brownianBridge_));
    }

    template <class RNG, class S>
    inline TimeGrid MCPathBasketEngine<RNG,S>::timeGrid() const {
        const std::vector<Date> & fixings = this->arguments_.fixingDates;
        const Size numberOfFixings = fixings.size();

        std::vector<Time> fixingTimes(numberOfFixings);
        for (Size i = 0; i < numberOfFixings; ++i) {
            fixingTimes[i] =
                this->process_->time(fixings[i]);
        }

        const Size numberOfTimeSteps = timeSteps_ != Null<Size>() ? timeSteps_ : timeStepsPerYear_ * fixingTimes.back();

        return TimeGrid(fixingTimes.begin(), fixingTimes.end(), numberOfTimeSteps);
    }

    template <class RNG, class S>
    inline
    boost::shared_ptr<typename MCPathBasketEngine<RNG,S>::path_pricer_type>
    MCPathBasketEngine<RNG,S>::pathPricer() const {

        boost::shared_ptr<PathPayoff> payoff = arguments_.payoff;
        QL_REQUIRE(payoff, "non-basket payoff given");

        boost::shared_ptr<GeneralizedBlackScholesProcess> process =
            boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
                                                       process_->process(0));
        QL_REQUIRE(process, "Black-Scholes process required");

        const TimeGrid theTimeGrid = timeGrid();

        const std::vector<Time> & times = theTimeGrid.mandatoryTimes();
        const Size numberOfTimes = times.size();

        const std::vector<Date> & fixings = this->arguments_.fixingDates;

        QL_REQUIRE(fixings.size() == numberOfTimes, "Invalid dates/times");

        std::vector<Size> timePositions(numberOfTimes);
        Array discountFactors(numberOfTimes);
        std::vector<Handle<YieldTermStructure> > forwardTermStructures(numberOfTimes);

        const Handle<YieldTermStructure> & riskFreeRate = process->riskFreeRate();

        for (Size i = 0; i < numberOfTimes; ++i) {
            timePositions[i] = theTimeGrid.index(times[i]);
            discountFactors[i] = riskFreeRate->discount(times[i]);
            forwardTermStructures[i] = Handle<YieldTermStructure>(
                        new ImpliedTermStructure(riskFreeRate, fixings[i]));
        }

        return boost::shared_ptr<
            typename MCPathBasketEngine<RNG,S>::path_pricer_type>(
                        new EuropeanPathMultiPathPricer(payoff, timePositions,
                                                        forwardTermStructures,
                                                        discountFactors));
    }


    //! Monte Carlo Path Basket engine factory
    template <class RNG = PseudoRandom, class S = Statistics>
    class MakeMCPathBasketEngine {
      public:
        MakeMCPathBasketEngine(const boost::shared_ptr<StochasticProcessArray>&);
        // named parameters
        MakeMCPathBasketEngine& withSteps(Size steps);
        MakeMCPathBasketEngine& withStepsPerYear(Size steps);
        MakeMCPathBasketEngine& withBrownianBridge(bool b = true);
        MakeMCPathBasketEngine& withSamples(Size samples);
        MakeMCPathBasketEngine& withAbsoluteTolerance(Real tolerance);
        MakeMCPathBasketEngine& withMaxSamples(Size samples);
        MakeMCPathBasketEngine& withSeed(BigNatural seed);
        MakeMCPathBasketEngine& withAntitheticVariate(bool b = true);
        MakeMCPathBasketEngine& withControlVariate(bool b = true);
        // conversion to pricing engine
        operator boost::shared_ptr<PricingEngine>() const;
      private:
        boost::shared_ptr<StochasticProcessArray> process_;
        bool antithetic_, controlVariate_;
        Size steps_, stepsPerYear_, samples_, maxSamples_;
        Real tolerance_;
        bool brownianBridge_;
        BigNatural seed_;
    };

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>::MakeMCPathBasketEngine(
        const boost::shared_ptr<StochasticProcessArray>& process)
    : process_(process),
      antithetic_(false), controlVariate_(false),
      steps_(Null<Size>()), stepsPerYear_(Null<Size>()),
      samples_(Null<Size>()), maxSamples_(Null<Size>()),
      tolerance_(Null<Real>()), brownianBridge_(false), seed_(0) {}

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withSteps(Size steps) {
        steps_ = steps;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withStepsPerYear(Size steps) {
        stepsPerYear_ = steps;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withSamples(Size samples) {
        QL_REQUIRE(tolerance_ == Null<Real>(),
                   "tolerance already set");
        samples_ = samples;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withAbsoluteTolerance(Real tolerance) {
        QL_REQUIRE(samples_ == Null<Size>(),
                   "number of samples already set");
        QL_REQUIRE(RNG::allowsErrorEstimate,
                   "chosen random generator policy "
                   "does not allow an error estimate");
        tolerance_ = tolerance;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withMaxSamples(Size samples) {
        maxSamples_ = samples;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withSeed(BigNatural seed) {
        seed_ = seed;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withBrownianBridge(bool brownianBridge) {
        brownianBridge_ = brownianBridge;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withAntitheticVariate(bool b) {
        antithetic_ = b;
        return *this;
    }

    template <class RNG, class S>
    inline MakeMCPathBasketEngine<RNG,S>&
    MakeMCPathBasketEngine<RNG,S>::withControlVariate(bool b) {
        controlVariate_ = b;
        return *this;
    }

    template <class RNG, class S>
    inline
    MakeMCPathBasketEngine<RNG,S>::operator boost::shared_ptr<PricingEngine>()
                                                                       const {
        return boost::shared_ptr<PricingEngine>(new
            MCPathBasketEngine<RNG,S>(process_,
                                      steps_,
                                      stepsPerYear_,
                                      brownianBridge_,
                                      antithetic_,
                                      controlVariate_,
                                      samples_,
                                      tolerance_,
                                      maxSamples_,
                                      seed_));
    }

}


#endif