/usr/include/ql/experimental/mcbasket/mcamericanpathengine.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Andrea Odetti
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_american_path_montecarlo_engine_hpp
#define quantlib_american_path_montecarlo_engine_hpp
#include <ql/experimental/mcbasket/longstaffschwartzmultipathpricer.hpp>
#include <ql/experimental/mcbasket/mclongstaffschwartzpathengine.hpp>
#include <ql/experimental/mcbasket/pathmultiassetoption.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/termstructures/yield/impliedtermstructure.hpp>
#include <boost/function.hpp>
namespace QuantLib {
//! least-square Monte Carlo engine
/*! \warning This method is intrinsically weak for out-of-the-money
options.
\ingroup basketengines
*/
template <class RNG = PseudoRandom>
class MCAmericanPathEngine
: public MCLongstaffSchwartzPathEngine<
PathMultiAssetOption::engine,MultiVariate,RNG> {
public:
MCAmericanPathEngine(const boost::shared_ptr<StochasticProcessArray>&,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples = Null<Size>());
protected:
boost::shared_ptr<LongstaffSchwartzMultiPathPricer>
lsmPathPricer() const;
};
//! Monte Carlo American basket-option engine factory
template <class RNG = PseudoRandom>
class MakeMCAmericanPathEngine {
public:
MakeMCAmericanPathEngine(
const boost::shared_ptr<StochasticProcessArray>&);
// named parameters
MakeMCAmericanPathEngine& withSteps(Size steps);
MakeMCAmericanPathEngine& withStepsPerYear(Size steps);
MakeMCAmericanPathEngine& withBrownianBridge(bool b = true);
MakeMCAmericanPathEngine& withAntitheticVariate(bool b = true);
MakeMCAmericanPathEngine& withControlVariate(bool b = true);
MakeMCAmericanPathEngine& withSamples(Size samples);
MakeMCAmericanPathEngine& withAbsoluteTolerance(Real tolerance);
MakeMCAmericanPathEngine& withMaxSamples(Size samples);
MakeMCAmericanPathEngine& withSeed(BigNatural seed);
MakeMCAmericanPathEngine& withCalibrationSamples(Size samples);
// conversion to pricing engine
operator boost::shared_ptr<PricingEngine>() const;
private:
boost::shared_ptr<StochasticProcessArray> process_;
bool brownianBridge_, antithetic_, controlVariate_;
Size steps_, stepsPerYear_, samples_, maxSamples_, calibrationSamples_;
Real tolerance_;
BigNatural seed_;
};
template <class RNG> inline
MCAmericanPathEngine<RNG>::MCAmericanPathEngine(
const boost::shared_ptr<StochasticProcessArray>& processes,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples)
: MCLongstaffSchwartzPathEngine<PathMultiAssetOption::engine,
MultiVariate,RNG>(processes,
timeSteps,
timeStepsPerYear,
brownianBridge,
antitheticVariate,
controlVariate,
requiredSamples,
requiredTolerance,
maxSamples,
seed,
nCalibrationSamples) {}
template <class RNG>
inline boost::shared_ptr<LongstaffSchwartzMultiPathPricer>
MCAmericanPathEngine<RNG>::lsmPathPricer() const {
boost::shared_ptr<StochasticProcessArray> processArray =
boost::dynamic_pointer_cast<StochasticProcessArray>(this->process_);
QL_REQUIRE(processArray && processArray->size()>0,
"Stochastic process array required");
boost::shared_ptr<GeneralizedBlackScholesProcess> process =
boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
processArray->process(0));
QL_REQUIRE(process, "generalized Black-Scholes process required");
const TimeGrid theTimeGrid = this->timeGrid();
const std::vector<Time> & times = theTimeGrid.mandatoryTimes();
const Size numberOfTimes = times.size();
const std::vector<Date> & fixings = this->arguments_.fixingDates;
QL_REQUIRE(fixings.size() == numberOfTimes, "Invalid dates/times");
std::vector<Size> timePositions(numberOfTimes);
Array discountFactors(numberOfTimes);
std::vector<Handle<YieldTermStructure> > forwardTermStructures(numberOfTimes);
const Handle<YieldTermStructure> & riskFreeRate = process->riskFreeRate();
for (Size i = 0; i < numberOfTimes; ++i) {
timePositions[i] = theTimeGrid.index(times[i]);
discountFactors[i] = riskFreeRate->discount(times[i]);
forwardTermStructures[i] = Handle<YieldTermStructure>(
new ImpliedTermStructure(riskFreeRate, fixings[i]));
}
const Size polynomialOrder = 2;
const LsmBasisSystem::PolynomType polynomType = LsmBasisSystem::Monomial;
return boost::shared_ptr<LongstaffSchwartzMultiPathPricer> (
new LongstaffSchwartzMultiPathPricer(this->arguments_.payoff,
timePositions,
forwardTermStructures,
discountFactors,
polynomialOrder,
polynomType));
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>::MakeMCAmericanPathEngine(
const boost::shared_ptr<StochasticProcessArray>& process)
: process_(process), brownianBridge_(false), antithetic_(false),
controlVariate_(false),
steps_(Null<Size>()), stepsPerYear_(Null<Size>()),
samples_(Null<Size>()), maxSamples_(Null<Size>()),
calibrationSamples_(Null<Size>()),
tolerance_(Null<Real>()), seed_(0) {}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withSteps(Size steps) {
steps_ = steps;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withStepsPerYear(Size steps) {
stepsPerYear_ = steps;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withBrownianBridge(bool brownianBridge) {
brownianBridge_ = brownianBridge;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withAntitheticVariate(bool b) {
antithetic_ = b;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withControlVariate(bool b) {
controlVariate_ = b;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withSamples(Size samples) {
QL_REQUIRE(tolerance_ == Null<Real>(),
"tolerance already set");
samples_ = samples;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withAbsoluteTolerance(Real tolerance) {
QL_REQUIRE(samples_ == Null<Size>(),
"number of samples already set");
QL_REQUIRE(RNG::allowsErrorEstimate,
"chosen random generator policy "
"does not allow an error estimate");
tolerance_ = tolerance;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withMaxSamples(Size samples) {
maxSamples_ = samples;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withSeed(BigNatural seed) {
seed_ = seed;
return *this;
}
template <class RNG>
inline MakeMCAmericanPathEngine<RNG>&
MakeMCAmericanPathEngine<RNG>::withCalibrationSamples(Size samples) {
calibrationSamples_ = samples;
return *this;
}
template <class RNG>
inline
MakeMCAmericanPathEngine<RNG>::operator
boost::shared_ptr<PricingEngine>() const {
QL_REQUIRE(steps_ != Null<Size>() || stepsPerYear_ != Null<Size>(),
"number of steps not given");
QL_REQUIRE(steps_ == Null<Size>() || stepsPerYear_ == Null<Size>(),
"number of steps overspecified");
return boost::shared_ptr<PricingEngine>(new
MCAmericanPathEngine<RNG>(process_,
steps_,
stepsPerYear_,
brownianBridge_,
antithetic_,
controlVariate_,
samples_,
tolerance_,
maxSamples_,
seed_,
calibrationSamples_));
}
}
#endif
|