/usr/include/ql/experimental/exoticoptions/mchimalayaengine.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mchimalayaengine.hpp
\brief Monte Carlo engine for Himalaya options
*/
#ifndef quantlib_mc_himalaya_engine_hpp
#define quantlib_mc_himalaya_engine_hpp
#include <ql/experimental/exoticoptions/himalayaoption.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/exercise.hpp>
namespace QuantLib {
template <class RNG = PseudoRandom, class S = Statistics>
class MCHimalayaEngine : public HimalayaOption::engine,
public McSimulation<MultiVariate,RNG,S> {
public:
typedef typename McSimulation<MultiVariate,RNG,S>::path_generator_type
path_generator_type;
typedef typename McSimulation<MultiVariate,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<MultiVariate,RNG,S>::stats_type
stats_type;
MCHimalayaEngine(const boost::shared_ptr<StochasticProcessArray>&,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed);
void calculate() const {
McSimulation<MultiVariate,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
results_.value = this->mcModel_->sampleAccumulator().mean();
if (RNG::allowsErrorEstimate)
results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
private:
// McSimulation implementation
TimeGrid timeGrid() const;
boost::shared_ptr<path_generator_type> pathGenerator() const {
Size numAssets = processes_->size();
TimeGrid grid = timeGrid();
typename RNG::rsg_type gen =
RNG::make_sequence_generator(numAssets*(grid.size()-1),seed_);
return boost::shared_ptr<path_generator_type>(
new path_generator_type(processes_,
grid, gen, brownianBridge_));
}
boost::shared_ptr<path_pricer_type> pathPricer() const;
// data members
boost::shared_ptr<StochasticProcessArray> processes_;
Size requiredSamples_;
Size maxSamples_;
Real requiredTolerance_;
bool brownianBridge_;
BigNatural seed_;
};
//! Monte Carlo Himalaya-option engine factory
template <class RNG = PseudoRandom, class S = Statistics>
class MakeMCHimalayaEngine {
public:
MakeMCHimalayaEngine(
const boost::shared_ptr<StochasticProcessArray>&);
// named parameters
MakeMCHimalayaEngine& withBrownianBridge(bool b = true);
MakeMCHimalayaEngine& withAntitheticVariate(bool b = true);
MakeMCHimalayaEngine& withSamples(Size samples);
MakeMCHimalayaEngine& withAbsoluteTolerance(Real tolerance);
MakeMCHimalayaEngine& withMaxSamples(Size samples);
MakeMCHimalayaEngine& withSeed(BigNatural seed);
// conversion to pricing engine
operator boost::shared_ptr<PricingEngine>() const;
private:
boost::shared_ptr<StochasticProcessArray> process_;
bool brownianBridge_, antithetic_;
Size samples_, maxSamples_;
Real tolerance_;
BigNatural seed_;
};
class HimalayaMultiPathPricer : public PathPricer<MultiPath> {
public:
HimalayaMultiPathPricer(const boost::shared_ptr<Payoff>& payoff,
DiscountFactor discount);
Real operator()(const MultiPath& multiPath) const;
private:
boost::shared_ptr<Payoff> payoff_;
DiscountFactor discount_;
};
// template definitions
template<class RNG, class S>
inline MCHimalayaEngine<RNG,S>::MCHimalayaEngine(
const boost::shared_ptr<StochasticProcessArray>& processes,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed)
: McSimulation<MultiVariate,RNG,S>(antitheticVariate, false),
processes_(processes), requiredSamples_(requiredSamples),
maxSamples_(maxSamples), requiredTolerance_(requiredTolerance),
brownianBridge_(brownianBridge), seed_(seed) {
registerWith(processes_);
}
template <class RNG, class S>
inline TimeGrid MCHimalayaEngine<RNG,S>::timeGrid() const {
std::vector<Time> fixingTimes;
for (Size i=0; i<arguments_.fixingDates.size(); i++) {
Time t = processes_->time(arguments_.fixingDates[i]);
QL_REQUIRE(t >= 0.0, "seasoned options are not handled");
if (i > 0) {
QL_REQUIRE(t > fixingTimes.back(), "fixing dates not sorted");
}
fixingTimes.push_back(t);
}
return TimeGrid(fixingTimes.begin(), fixingTimes.end());
}
template <class RNG, class S>
inline
boost::shared_ptr<typename MCHimalayaEngine<RNG,S>::path_pricer_type>
MCHimalayaEngine<RNG,S>::pathPricer() const {
boost::shared_ptr<GeneralizedBlackScholesProcess> process =
boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
processes_->process(0));
QL_REQUIRE(process, "Black-Scholes process required");
return boost::shared_ptr<
typename MCHimalayaEngine<RNG,S>::path_pricer_type>(
new HimalayaMultiPathPricer(arguments_.payoff,
process->riskFreeRate()->discount(
arguments_.exercise->lastDate())));
}
template <class RNG, class S>
inline MakeMCHimalayaEngine<RNG,S>::MakeMCHimalayaEngine(
const boost::shared_ptr<StochasticProcessArray>& process)
: process_(process), brownianBridge_(false), antithetic_(false),
samples_(Null<Size>()), maxSamples_(Null<Size>()),
tolerance_(Null<Real>()), seed_(0) {}
template <class RNG, class S>
inline MakeMCHimalayaEngine<RNG,S>&
MakeMCHimalayaEngine<RNG,S>::withBrownianBridge(bool brownianBridge) {
brownianBridge_ = brownianBridge;
return *this;
}
template <class RNG, class S>
inline MakeMCHimalayaEngine<RNG,S>&
MakeMCHimalayaEngine<RNG,S>::withAntitheticVariate(bool b) {
antithetic_ = b;
return *this;
}
template <class RNG, class S>
inline MakeMCHimalayaEngine<RNG,S>&
MakeMCHimalayaEngine<RNG,S>::withSamples(Size samples) {
QL_REQUIRE(tolerance_ == Null<Real>(),
"tolerance already set");
samples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCHimalayaEngine<RNG,S>&
MakeMCHimalayaEngine<RNG,S>::withAbsoluteTolerance(Real tolerance) {
QL_REQUIRE(samples_ == Null<Size>(),
"number of samples already set");
QL_REQUIRE(RNG::allowsErrorEstimate,
"chosen random generator policy "
"does not allow an error estimate");
tolerance_ = tolerance;
return *this;
}
template <class RNG, class S>
inline MakeMCHimalayaEngine<RNG,S>&
MakeMCHimalayaEngine<RNG,S>::withMaxSamples(Size samples) {
maxSamples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCHimalayaEngine<RNG,S>&
MakeMCHimalayaEngine<RNG,S>::withSeed(BigNatural seed) {
seed_ = seed;
return *this;
}
template <class RNG, class S>
inline
MakeMCHimalayaEngine<RNG,S>::operator boost::shared_ptr<PricingEngine>()
const {
return boost::shared_ptr<PricingEngine>(new
MCHimalayaEngine<RNG,S>(process_,
brownianBridge_,
antithetic_,
samples_,
tolerance_,
maxSamples_,
seed_));
}
}
#endif
|