/usr/include/ql/experimental/exoticoptions/mceverestengine.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mceverestengine.hpp
\brief Monte Carlo engine for Everest options
*/
#ifndef quantlib_mc_everest_engine_hpp
#define quantlib_mc_everest_engine_hpp
#include <ql/experimental/exoticoptions/everestoption.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/exercise.hpp>
namespace QuantLib {
template <class RNG = PseudoRandom, class S = Statistics>
class MCEverestEngine : public EverestOption::engine,
public McSimulation<MultiVariate,RNG,S> {
public:
typedef typename McSimulation<MultiVariate,RNG,S>::path_generator_type
path_generator_type;
typedef typename McSimulation<MultiVariate,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<MultiVariate,RNG,S>::stats_type
stats_type;
MCEverestEngine(const boost::shared_ptr<StochasticProcessArray>&,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed);
void calculate() const {
McSimulation<MultiVariate,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
results_.value = this->mcModel_->sampleAccumulator().mean();
if (RNG::allowsErrorEstimate) {
results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
Real notional = arguments_.notional;
DiscountFactor discount = endDiscount();
results_.yield = results_.value/(notional * discount) - 1.0;
}
private:
DiscountFactor endDiscount() const;
// McEverest implementation
TimeGrid timeGrid() const;
boost::shared_ptr<path_generator_type> pathGenerator() const {
Size numAssets = processes_->size();
TimeGrid grid = timeGrid();
typename RNG::rsg_type gen =
RNG::make_sequence_generator(numAssets*(grid.size()-1),seed_);
return boost::shared_ptr<path_generator_type>(
new path_generator_type(processes_,
grid, gen, brownianBridge_));
}
boost::shared_ptr<path_pricer_type> pathPricer() const;
// data members
boost::shared_ptr<StochasticProcessArray> processes_;
Size timeSteps_, timeStepsPerYear_;
Size requiredSamples_;
Size maxSamples_;
Real requiredTolerance_;
bool brownianBridge_;
BigNatural seed_;
};
//! Monte Carlo Everest-option engine factory
template <class RNG = PseudoRandom, class S = Statistics>
class MakeMCEverestEngine {
public:
MakeMCEverestEngine(const boost::shared_ptr<StochasticProcessArray>&);
// named parameters
MakeMCEverestEngine& withSteps(Size steps);
MakeMCEverestEngine& withStepsPerYear(Size steps);
MakeMCEverestEngine& withBrownianBridge(bool b = true);
MakeMCEverestEngine& withAntitheticVariate(bool b = true);
MakeMCEverestEngine& withSamples(Size samples);
MakeMCEverestEngine& withAbsoluteTolerance(Real tolerance);
MakeMCEverestEngine& withMaxSamples(Size samples);
MakeMCEverestEngine& withSeed(BigNatural seed);
// conversion to pricing engine
operator boost::shared_ptr<PricingEngine>() const;
private:
boost::shared_ptr<StochasticProcessArray> process_;
bool brownianBridge_, antithetic_;
Size steps_, stepsPerYear_, samples_, maxSamples_;
Real tolerance_;
BigNatural seed_;
};
class EverestMultiPathPricer : public PathPricer<MultiPath> {
public:
explicit EverestMultiPathPricer(Real notional,
Rate guarantee,
DiscountFactor discount);
Real operator()(const MultiPath& multiPath) const;
private:
Real notional_;
Rate guarantee_;
DiscountFactor discount_;
};
// template definitions
template<class RNG, class S>
inline MCEverestEngine<RNG,S>::MCEverestEngine(
const boost::shared_ptr<StochasticProcessArray>& processes,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed)
: McSimulation<MultiVariate,RNG,S>(antitheticVariate, false),
processes_(processes), timeSteps_(timeSteps),
timeStepsPerYear_(timeStepsPerYear),
requiredSamples_(requiredSamples), maxSamples_(maxSamples),
requiredTolerance_(requiredTolerance),
brownianBridge_(brownianBridge), seed_(seed) {
QL_REQUIRE(timeSteps != Null<Size>() ||
timeStepsPerYear != Null<Size>(),
"no time steps provided");
QL_REQUIRE(timeSteps == Null<Size>() ||
timeStepsPerYear == Null<Size>(),
"both time steps and time steps per year were provided");
QL_REQUIRE(timeSteps != 0,
"timeSteps must be positive, " << timeSteps <<
" not allowed");
QL_REQUIRE(timeStepsPerYear != 0,
"timeStepsPerYear must be positive, " << timeStepsPerYear <<
" not allowed");
registerWith(processes_);
}
template <class RNG, class S>
inline TimeGrid MCEverestEngine<RNG,S>::timeGrid() const {
Time residualTime = processes_->time(
this->arguments_.exercise->lastDate());
if (timeSteps_ != Null<Size>()) {
return TimeGrid(residualTime, timeSteps_);
} else if (timeStepsPerYear_ != Null<Size>()) {
Size steps = static_cast<Size>(timeStepsPerYear_*residualTime);
return TimeGrid(residualTime, std::max<Size>(steps, 1));
} else {
QL_FAIL("time steps not specified");
}
}
template <class RNG, class S>
inline DiscountFactor MCEverestEngine<RNG,S>::endDiscount() const {
boost::shared_ptr<GeneralizedBlackScholesProcess> process =
boost::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
processes_->process(0));
QL_REQUIRE(process, "Black-Scholes process required");
return process->riskFreeRate()->discount(
arguments_.exercise->lastDate());
}
template <class RNG, class S>
inline boost::shared_ptr<typename MCEverestEngine<RNG,S>::path_pricer_type>
MCEverestEngine<RNG,S>::pathPricer() const {
return boost::shared_ptr<
typename MCEverestEngine<RNG,S>::path_pricer_type>(
new EverestMultiPathPricer(arguments_.notional,
arguments_.guarantee,
endDiscount()));
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>::MakeMCEverestEngine(
const boost::shared_ptr<StochasticProcessArray>& process)
: process_(process), brownianBridge_(false), antithetic_(false),
steps_(Null<Size>()), stepsPerYear_(Null<Size>()),
samples_(Null<Size>()), maxSamples_(Null<Size>()),
tolerance_(Null<Real>()), seed_(0) {}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withSteps(Size steps) {
steps_ = steps;
return *this;
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withStepsPerYear(Size steps) {
stepsPerYear_ = steps;
return *this;
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withBrownianBridge(bool brownianBridge) {
brownianBridge_ = brownianBridge;
return *this;
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withAntitheticVariate(bool b) {
antithetic_ = b;
return *this;
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withSamples(Size samples) {
QL_REQUIRE(tolerance_ == Null<Real>(),
"tolerance already set");
samples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withAbsoluteTolerance(Real tolerance) {
QL_REQUIRE(samples_ == Null<Size>(),
"number of samples already set");
QL_REQUIRE(RNG::allowsErrorEstimate,
"chosen random generator policy "
"does not allow an error estimate");
tolerance_ = tolerance;
return *this;
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withMaxSamples(Size samples) {
maxSamples_ = samples;
return *this;
}
template <class RNG, class S>
inline MakeMCEverestEngine<RNG,S>&
MakeMCEverestEngine<RNG,S>::withSeed(BigNatural seed) {
seed_ = seed;
return *this;
}
template <class RNG, class S>
inline
MakeMCEverestEngine<RNG,S>::operator
boost::shared_ptr<PricingEngine>() const {
QL_REQUIRE(steps_ != Null<Size>() || stepsPerYear_ != Null<Size>(),
"number of steps not given");
QL_REQUIRE(steps_ == Null<Size>() || stepsPerYear_ == Null<Size>(),
"number of steps overspecified");
return boost::shared_ptr<PricingEngine>(new
MCEverestEngine<RNG,S>(process_,
steps_,
stepsPerYear_,
brownianBridge_,
antithetic_,
samples_, tolerance_,
maxSamples_,
seed_));
}
}
#endif
|