This file is indexed.

/usr/include/ql/experimental/credit/syntheticcdoengines.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Roland Lichters
 Copyright (C) 2009 Jose Aparicio

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file syntheticcdoengines.hpp
    \brief Pricing engines for the Synthetic CDO instrument
    \todo Add further engines for analytical expected tranche loss
          cases - large homogeneous pool with Normal Inverse Gaussian,
          Gamma copula
*/

#ifndef quantlib_synthetic_cdo_engines_hpp
#define quantlib_synthetic_cdo_engines_hpp

#include <ql/experimental/credit/syntheticcdo.hpp>
#include <ql/experimental/credit/randomdefaultmodel.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/bivariatenormaldistribution.hpp>

namespace QuantLib {

    //--------------------------------------------------------------------------
    //! CDO base engine
    class SyntheticCDO::engine : public GenericEngine<SyntheticCDO::arguments,
                                                      SyntheticCDO::results> {
    protected:
        virtual Real expectedTrancheLoss(const Date&) const = 0;
        virtual void initialize() const {
            Date today = Settings::instance().evaluationDate();
            Date start = this->arguments_.schedule.startDate();
            boost::shared_ptr<Basket>& basket = this->arguments_.basket;
            /*
              Remove defaulted names and adjust the subordination.
            */
            std::vector<std::string> names = basket->remainingNames(start, today);
            std::vector<Real> notionals
                = basket->remainingNotionals(start, today);
            Real a = basket->remainingAttachmentRatio(start, today);
            Real d = basket->remainingDetachmentRatio(start, today);
            const boost::shared_ptr<Pool> pool = basket->pool();
            remainingBasket_ =
                boost::shared_ptr<Basket>(new Basket(names, notionals, pool,
                                                    basket->remainingDefaultKeys(start, today),
                                                    basket->remainingRecModels(start, today),
                                                     a, d));

            this->results_.xMin = remainingBasket_->attachmentAmount();
            this->results_.xMax = remainingBasket_->detachmentAmount();
            this->results_.remainingNotional = results_.xMax - results_.xMin;

            const std::vector<Date>& dates = arguments_.schedule.dates();
            for (Size i = 0; i < dates.size(); i++) {
                if (dates[i] <= today)
                    results_.expectedTrancheLoss.push_back(0.0);
                else {
                    Real L = expectedTrancheLoss(dates[i]);
                    results_.expectedTrancheLoss.push_back(L);
                }
            }
        }
        mutable boost::shared_ptr<Basket> remainingBasket_;
    };

    //--------------------------------------------------------------------------
    //! CDO base engine taking schedule steps
    class MidPointCDOEngine : public SyntheticCDO::engine {
      public:
        MidPointCDOEngine() {}
        void calculate() const;
      private:
        virtual Real expectedTrancheLoss(const Date&) const = 0;
    };

    //--------------------------------------------------------------------------
    //! CDO base engine taking (possibly) small time steps
    class IntegralCDOEngine : public SyntheticCDO::engine {
    public:
        void calculate() const;
        IntegralCDOEngine(Period stepSize = 3*Months) : stepSize_(stepSize) {}
    private:
        virtual Real expectedTrancheLoss(const Date&) const = 0;
    protected:
        Period stepSize_;
    };

    //--------------------------------------------------------------------------
    //! CDO engine, Monte Carlo for the exptected tranche loss distribution
    class MonteCarloCDOEngine1 : public MidPointCDOEngine {
    public:
        MonteCarloCDOEngine1 (boost::shared_ptr<RandomDefaultModel> rdm,
                              Size samples)
            : rdm_(rdm), samples_(samples) {}
    private:
        void defaultScenarios() const;

        void initialize() const {
            Date today = Settings::instance().evaluationDate();
            Date start = this->arguments_.schedule.startDate();
            boost::shared_ptr<Basket>& basket = this->arguments_.basket;
            std::vector<std::string> names = basket->remainingNames(start, today);
            std::vector<Real> notionals
                = basket->remainingNotionals(start, today);
            Real a = basket->remainingAttachmentRatio(start, today);
            Real d = basket->remainingDetachmentRatio(start, today);
            const boost::shared_ptr<Pool> pool = basket->pool();
            remainingBasket_ =
                boost::shared_ptr<Basket>(new Basket(names, notionals,
                                                     pool,
                                                     basket->remainingDefaultKeys(start, today),
                                                     basket->remainingRecModels(start, today),
                                                     a, d));

            this->results_.xMin = remainingBasket_->attachmentAmount();
            this->results_.xMax = remainingBasket_->detachmentAmount();

            this->results_.remainingNotional = results_.xMax - results_.xMin;

            // This sets the vector results_.expectedTrancheLoss for each
            // schedule date by Monte Carlo simulation
            defaultScenarios();
        }

        Real expectedTrancheLoss(const Date& d) const {
            const std::vector<Date>& dates = arguments_.schedule.dates();
            Real L = 0.0;
            for (Size i = 0; i < dates.size(); i++)
                if (d >= dates[i])
                    L = results_.expectedTrancheLoss[i];
                else
                    break;
            return L;
        }

        boost::shared_ptr<RandomDefaultModel> rdm_;
        Size samples_;
    };

    //--------------------------------------------------------------------------
    //! CDO engine, Monte Carlo for the sample payoff
    class MonteCarloCDOEngine2 : public SyntheticCDO::engine {
      public:
        MonteCarloCDOEngine2 (boost::shared_ptr<RandomDefaultModel> rdm,
                              Size samples)
            : rdm_(rdm), samples_(samples) {}
        void calculate() const;
      private:
        // not needed here
        Real expectedTrancheLoss(const Date&) const { return 0.0; }

        boost::shared_ptr<RandomDefaultModel> rdm_;
        Size samples_;
    };

    //--------------------------------------------------------------------------
    //! CDO engine, loss distribution convolution for finite homogeneous pool
    template <class CDOEngine>
    class HomogeneousPoolCDOEngine : public CDOEngine {
    public:
        HomogeneousPoolCDOEngine(const Handle<OneFactorCopula> copula,
                                 Size nBuckets)
            : copula_(copula), nBuckets_(nBuckets) {
            this->registerWith(copula_);
        }
    private:
        Real expectedTrancheLoss(const Date& d) const {
            LossDistHomogeneous op(nBuckets_, this->results_.xMax);
            std::vector<Real> lgd = this->remainingBasket_->LGDs();
            std::vector<Real> prob = this->remainingBasket_->probabilities(d);
            Distribution dist = copula_->integral (op, lgd, prob);
            return dist.cumulativeExcessProbability (this->results_.xMin,
                                                     this->results_.xMax);
        };
    protected:
        const Handle<OneFactorCopula> copula_;
        Size nBuckets_;
    };

    //--------------------------------------------------------------------------
    //! CDO engine, loss disctribution bucketing for finite inhomogeneous pool
    template <class CDOEngine>
    class InhomogeneousPoolCDOEngine : public CDOEngine {
    public:
        InhomogeneousPoolCDOEngine(const Handle<OneFactorCopula> copula,
                                   Size nBuckets)
            : copula_(copula), nBuckets_(nBuckets) {
            this->registerWith(copula_);
        }
    private:
        Real expectedTrancheLoss(const Date& d) const{
            LossDistBucketing op (nBuckets_, this->results_.xMax);
            std::vector<Real> lgd = this->remainingBasket_->LGDs();
            std::vector<Real> prob = this->remainingBasket_->probabilities(d);
            Distribution dist = copula_->integral (op, lgd, prob);
            return dist.cumulativeExcessProbability (this->results_.xMin,
                                                     this->results_.xMax);
    };
    protected:
        const Handle<OneFactorCopula> copula_;
        Size nBuckets_;
    };

    //--------------------------------------------------------------------------
    /*!
      CDO engine with analytical expected tranche loss for a large homogeneous
      pool with Gaussian one-factor copula. See for example
      "The Normal Inverse Gaussian Distribution for Synthetic CDO pricing.",
      Anna Kalemanova, Bernd Schmid, Ralf Werner,
      Journal of Derivatives, Vol. 14, No. 3, (Spring 2007), pp. 80-93.
      http://www.defaultrisk.com/pp_crdrv_91.htm
     */
    template <class CDOEngine>
    class GaussianLHPCDOEngine : public CDOEngine {
    public:
        GaussianLHPCDOEngine(const Handle<OneFactorCopula>& copula)
            : copula_(copula) {
            this->registerWith(copula_);
        }
    private:
        Real expectedTrancheLoss(const Date& d) const {
            Date today = Settings::instance().evaluationDate();
            Date start = this->arguments_.schedule.startDate();
            boost::shared_ptr<Basket>& basket = this->arguments_.basket;
            std::vector<std::string> names =
                basket->remainingNames(start, today);
            const boost::shared_ptr<Pool> pool = basket->pool();

            Issuer name = pool->get(names[0]);
            Real prob = name.defaultProbability(basket->defaultKeys()[0])->defaultProbability(d);
            //what if the name has defualted? The homogeneity in the model concerns the default state too...
            Real rec = basket->recoveryModels()[0]->recoveryValue(d,
                basket->defaultKeys()[0]);
            Real ntl = this->results_.remainingNotional;
            Real attach = basket->remainingAttachmentRatio(start, today);
            Real detach = basket->remainingDetachmentRatio(start, today);
            Real one = 1.0 - 1.0e-12;  // FIXME
            Real k1 = std::min(one, attach / (1.0 - rec));
            Real k2 = std::min(one, detach / (1.0 - rec));

            Real y = sqrt(1.0 - copula_->correlation());
            BivariateCumulativeNormalDistribution biphi(-y);
            InverseCumulativeNormal inverse;
            CumulativeNormalDistribution phi;

            if (ntl == 0.) return 0.;

            if (prob > 0) {
                Real ip = inverse(prob);
                if (k1 > 0)
                    return ntl
                        * (biphi(-inverse(k1), ip) - biphi(-inverse(k2), ip))
                        / (k2 - k1);
                else return ntl * (prob - biphi(-inverse(k2), ip)) / (k2 - k1);
            }
            else return 0.0;
        };
        const Handle<OneFactorCopula> copula_;
    };

    typedef HomogeneousPoolCDOEngine<MidPointCDOEngine> HPMidPointCDOEngine;
    typedef HomogeneousPoolCDOEngine<IntegralCDOEngine> HPIntegralCDOEngine;

    typedef InhomogeneousPoolCDOEngine<MidPointCDOEngine> IHPMidPointCDOEngine;
    typedef InhomogeneousPoolCDOEngine<IntegralCDOEngine> IHPIntegralCDOEngine;

    typedef GaussianLHPCDOEngine<MidPointCDOEngine> GLHPMidPointCDOEngine;
    typedef GaussianLHPCDOEngine<IntegralCDOEngine> GLHPIntegralCDOEngine;

}

#endif