This file is indexed.

/usr/include/ql/experimental/credit/recursivecdoengine.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Jose Aparicio

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef recursive_cdo_engine_hpp
#define recursive_cdo_engine_hpp

#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/matrixutilities/factorreduction.hpp>
#include <ql/experimental/credit/syntheticcdoengines.hpp>
#include <ql/experimental/credit/onefactorgaussiancopula.hpp>
#include <ql/experimental/credit/onefactorstudentcopula.hpp>
#include <boost/bind.hpp>
#include <map>
#include <algorithm>

namespace QuantLib {

    /*! Recursive STCDO pricing for a heterogeneous pool of names. The pool
        names are heterogeneous in their default probabilities, notionals
        and recovery rates. Correlations are pairwise. The recursive pricing
        algorithm used here is described in Andersen, Sidenius and Basu;
        "All your hedges in one basket", Risk, November 2003, pages 67-72

        Notice that using copulas other than Gaussian it is only an
        approximation (see remark on p.68).
    */
    template <class CDOEngine, class copulaT>
    class RecursiveCdoEngine : public CDOEngine {
      public:
        // Base constructors call default Handle constructor, the copula is to
        // be relinked by template partial specializations on the copula type

        //! Single correlation construction
        RecursiveCdoEngine(const Handle<Quote>& correl,
                           Size nbuckets  = 1,
                           Size quadOrder = 20)
        : correlQuote_(correl), copula_(), nBuckets_(nbuckets),
          integral_(quadOrder), wk_()
        {
            this->registerWith(correl);
        }

        //! Correlation name to name single factor construction
        RecursiveCdoEngine(const Handle<Quote>& correl,
                           const Matrix& correlMtrx,
                           Size nbuckets  = 1,
                           Size quadOrder = 20)
        : correlQuote_(correl), copula_(), nBuckets_(nbuckets),
          integral_(quadOrder), wk_(),
          oneFactorCorrels_(factorReduction(correlMtrx))
        {
            // at least
            QL_REQUIRE(!oneFactorCorrels_.empty(),
                "Invalid correlation parameter matrix.");
        }
      protected:
        void initialize() const;
      private:
        //! Weights the conditional portfolio loss by the mkt factor
        //    distribtion
        Real integratorLoss(const Date& date, Real mktFactor) const {
            return expectedConditionalLoss(date, mktFactor) *
               copula_->density(mktFactor);
        }
        //! Portfolio loss conditional to the market factor value
        Real expectedConditionalLoss(const Date& date,
                                     Real mktFactor) const;
      public:
        void update();

        /*  Expected tranche Loss calculation.
            This is computed from the first equation on page 70 (not numbered)
            Notice that while we want to compute:
            \f[
            EL(t) = \sum_{l_k}l_k P(l;t) =
              \sum_{l_k}l_k \int P(l_k;t|\omega) d\omega q(\omega)
            \f]
            One can invert the sumation and the integral order to:
            \f[
            EL(t) = \int\,q(\omega)\,d\omega\,\sum_{l_k}\,l_k\,P(l_k;t|\omega) =
              \int\,q(\omega)\,d\omega\,EL(t|\omega)
            \f]
            and this is the way it is integrated here. The recursion formula makes
            it easier this way.
        */
        Real expectedTrancheLoss(const Date& date) const {
            return
                integral_(boost::bind(
                    &RecursiveCdoEngine<CDOEngine, copulaT>::integratorLoss,
                    this,
                    date,
                    _1)
                );
        }
      protected:
        const Handle<Quote> correlQuote_;
        mutable RelinkableHandle<copulaT> copula_;
      private:
        // loss model descriptor members
        Size nBuckets_;
       const GaussHermiteIntegration integral_;
        mutable std::vector<Real> wk_;
        mutable Real loss_unit_;
        //! name to name factor loadings (betas). In the single factor copula:
        //    correl = beta * beta
        // When constructing through a single correlation number the factor is
        //   taken to be the positive swuare root of this number in the copula.
        mutable std::vector<Real> oneFactorCorrels_;
    };


    template <class CDOEngine, class copulaT>
    void RecursiveCdoEngine<CDOEngine, copulaT>::update() {
        oneFactorCorrels_.clear();
        CDOEngine::update();
    }


    template <class CDOEngine, class copulaT>
    void RecursiveCdoEngine<CDOEngine, copulaT>::initialize() const {
        wk_.clear();
        Date today = Settings::instance().evaluationDate();
        Date start = this->arguments_.schedule.startDate();
        boost::shared_ptr<Basket>& basket = this->arguments_.basket;
        /*
          Remove defaulted names and adjust the subordination.
        */
        std::vector<std::string> names =
            basket->remainingNames(start, today);
        std::vector<Real> notionals
            = basket->remainingNotionals(start, today);
        Real a = basket->remainingAttachmentRatio(start, today);
        Real d = basket->remainingDetachmentRatio(start, today);
        const boost::shared_ptr<Pool> pool = basket->pool();
        this->remainingBasket_ =
            boost::shared_ptr<Basket>(new Basket(names, notionals, pool,
                                                basket->remainingDefaultKeys(start, today),
                                                basket->remainingRecModels(start, today),
                                                 a, d));

        this->results_.xMin = this->remainingBasket_->attachmentAmount();
        this->results_.xMax = this->remainingBasket_->detachmentAmount();
        this->results_.remainingNotional =
            this->results_.xMax - this->results_.xMin;
        //----------------------------------------------------------------
        if(oneFactorCorrels_.empty())
            oneFactorCorrels_ = std::vector<Real>(names.size(),
                                    correlQuote_->value());
        // check size of factors:
        QL_REQUIRE(oneFactorCorrels_.size() == names.size(),
            "Size of matrix must match number of names in the basket.");
        //
        std::vector<Real> lgdsTmp, lgds = this->remainingBasket_->LGDs();
        lgdsTmp = lgds;
        std::remove(lgds.begin(), lgds.end(), 0.);
        loss_unit_ = *(std::min_element(lgds.begin(), lgds.end()))
            / nBuckets_;

        for(Size i = 0; i<names.size(); i++)
            wk_.push_back(std::floor(lgdsTmp[i]/loss_unit_ + .5));

        // Could not check parameters at construction time because we
        //   had no arguments yet, do it now:
        if(oneFactorCorrels_.size() == 1)
            oneFactorCorrels_ =
                std::vector<Real>(pool->size(), oneFactorCorrels_[0]);
        else
            QL_REQUIRE(oneFactorCorrels_.size() == this->remainingBasket_->size(),
                "Incompatible correl matrix, pool size.");
        //----------------------------------------------------------------
        const std::vector<Date>& dates = this->arguments_.schedule.dates();
        for (Size i = 0; i < dates.size(); i++) {
            if (dates[i] <= today)
                this->results_.expectedTrancheLoss.push_back(0.0);
            else {
                Real L = expectedTrancheLoss(dates[i]);
                this->results_.expectedTrancheLoss.push_back(L);
            }
        }

    }


    //! Portfolio loss conditional to the market factor value
    template <class CDOEngine, class copulaT>
    Real RecursiveCdoEngine<CDOEngine, copulaT>::expectedConditionalLoss(
                                 const Date& date,
                                 Real mktFactor) const {
        const std::vector<std::string>& names = this->remainingBasket_->names();

        // eq. 10 p.68
        // attainable losses distribution, recursive algorithm
        std::vector<Probability> uncDefProb =
            this->remainingBasket_->probabilities(date);;
        std::map<Real, Probability> pIndepDistrib;
        // K=0
        pIndepDistrib.insert(std::make_pair(0., 1.));
        for(Size iName=0; iName<names.size(); iName++) {
            Real nameLoss = wk_[iName];

            // to do: allow for matrix constructor and uncoment this
            // correlQuote_->setValue(oneFactorCorrels_[iName]);

            Probability pDef =
                copula_->conditionalProbability(uncDefProb[iName],
                                                mktFactor);
            // iterate on all possible losses in the distribution:
            std::map<Real, Probability> pDistTemp;
            std::map<Real, Probability>::iterator distIt =
                pIndepDistrib.begin();
            while(distIt != pIndepDistrib.end()) {
                // update prob if this name does not default
                std::map<Real, Probability>::iterator matchIt
                    = pDistTemp.find(distIt->first);
                if(matchIt != pDistTemp.end()) {
                    matchIt->second += distIt->second * (1.-pDef);
                }else{
                    pDistTemp.insert(std::make_pair(distIt->first,
                        distIt->second * (1.-pDef)));
                }
                // and if it does
                matchIt = pDistTemp.find(distIt->first + wk_[iName]);
                if(matchIt != pDistTemp.end()) {
                    matchIt->second += distIt->second * pDef;
                }else{
                    pDistTemp.insert(std::make_pair(
                        distIt->first+wk_[iName], distIt->second * pDef));
                }
                distIt++;
            }
            // copy back
            pIndepDistrib = pDistTemp;
        }

        // get the expected value subject to the value of the market
        //   factor.
        Real expLoss = 0.;
        //---------------------------------------------------------------
        /* This is the original (easy to read) loop which I have partially
             unroll below to take profit of the fact that once we go over
             the tranche top the loss amount is fixed:

        std::map<Real, Probability>::iterator distIt =
            pIndepDistrib.begin();
        while(distIt != pIndepDistrib.end()) {
            Real loss = distIt->first * loss_unit_
                                ;
            loss = std::max(std::min(loss,
                results_.xMax)-results_.xMin, 0.);
            expLoss += loss * distIt->second;
            distIt++;
        }
        return expLoss ;
        */
        //---------------------------------------------------------------
        Real relativeMax = this->results_.xMax / loss_unit_;
        Real relativeMin = this->results_.xMin / loss_unit_;
        Size relativeMaxIdx = std::ceil(relativeMax);
        Size relativeMinIdx = std::floor(relativeMin);
        std::map<Real, Probability>::iterator
            distIt = pIndepDistrib.lower_bound(relativeMinIdx),
            itTop  = pIndepDistrib.lower_bound(relativeMax);
        for(; distIt != itTop; distIt++)
            expLoss += std::max(std::min(distIt->first, relativeMax)
                                -relativeMin, 0.) * distIt->second;
        Real sumProbs = 0.;
        for(;distIt != pIndepDistrib.end(); distIt++)
            sumProbs += distIt->second;
        return expLoss * loss_unit_ + this->results_.remainingNotional * sumProbs;
    }



    // Partial specializations on the copula type. Kind
    //   of template virtual constructions. Allows to own the correlation
    //   quote and the copula for each specific copula type. It only
    //   needs to know its particular copula constructor.
    // These and the base correlation pricers use a unifactorial copula
    //   which needs to be modified for different parameters of the
    //   correlation per name to name if theres such an structure or
    //   because the correlation parameter has got a time or/and loss
    //   level surface.
    //
    // TO do: Correlation matrix constructors.

    //! Specialization for Gaussian copula, the integration still remains
    //    to be defined by the user out of the available ones in
    //    syntheticcdoengines.
    template <class CDOEngine>
    class GaussianRecursiveCdoEngine : public
        RecursiveCdoEngine<CDOEngine, OneFactorGaussianCopula> {
      public:
        //! quote constructor.
        GaussianRecursiveCdoEngine(
            const Handle<Quote>& correlQuote,
            Size nbuckets  = 1,
            Size quadOrder = 12,
            Real maxval    = 5.,
            Size steps     = 50)
            :
            RecursiveCdoEngine<CDOEngine, OneFactorGaussianCopula>(correlQuote,
                    nbuckets, quadOrder) {
                this->copula_.linkTo(boost::shared_ptr<OneFactorGaussianCopula>(
                new OneFactorGaussianCopula(correlQuote,  maxval, steps)), true);
        }
    };

    template <class CDOEngine>
    class StudentRecursiveCdoEngine : public
        RecursiveCdoEngine<CDOEngine, OneFactorStudentCopula> {
      public:
        //! quote constructor.
        StudentRecursiveCdoEngine(
            const Handle<Quote>& correlQuote,
            Size nz,
            Size nm,
            Size nbuckets  = 1,
            Size quadOrder = 12,
            Real maxval    = 5.,
            Size steps     = 50)
            :
            RecursiveCdoEngine<CDOEngine, OneFactorStudentCopula>(correlQuote,
                    nbuckets, quadOrder) {
                this->copula_.linkTo(boost::shared_ptr<OneFactorStudentCopula>(
                new OneFactorStudentCopula(correlQuote, nz, nm, maxval, steps)), true);
        }
    };



    typedef GaussianRecursiveCdoEngine<MidPointCDOEngine> GaussRecCDOEngine;
    typedef StudentRecursiveCdoEngine<MidPointCDOEngine>  StudentRecCDOEngine;

}

#endif