This file is indexed.

/usr/include/ql/experimental/convertiblebonds/tflattice.hpp is in libquantlib0-dev 1.1-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2005, 2006 Theo Boafo
 Copyright (C) 2006 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file tflattice.hpp
    \brief Binomial Tsiveriotis-Fernandes tree model
*/

#ifndef quantlib_lattices_tf_lattice_hpp
#define quantlib_lattices_tf_lattice_hpp

#include <ql/methods/lattices/bsmlattice.hpp>
#include <ql/experimental/convertiblebonds/discretizedconvertible.hpp>

namespace QuantLib {

    //! Binomial lattice approximating the Tsiveriotis-Fernandes model
    /*! \ingroup lattices */
    template <class T>
    class TsiveriotisFernandesLattice : public BlackScholesLattice<T> {
      public:
        TsiveriotisFernandesLattice(const boost::shared_ptr<T>& tree,
                                    Rate riskFreeRate,
                                    Time end,
                                    Size steps,
                                    Spread creditSpread,
                                    Volatility volatility,
                                    Spread divYield);

        Spread creditSpread() const { return creditSpread_; };

      protected:
        void stepback(Size i,
                      const Array& values,
                      const Array& conversionProbability,
                      const Array& spreadAdjustedRate,
                      Array& newValues,
                      Array& newConversionProbability,
                      Array& newSpreadAdjustedRate) const;
        void rollback(DiscretizedAsset&, Time to) const;
        void partialRollback(DiscretizedAsset&, Time to) const;

      private:
        Spread creditSpread_;
    };


    // template definitions

    template <class T>
    TsiveriotisFernandesLattice<T>::TsiveriotisFernandesLattice(
                                             const boost::shared_ptr<T>& tree,
                                             Rate riskFreeRate,
                                             Time end,
                                             Size steps,
                                             Spread creditSpread,
                                             Volatility sigma,
                                             Spread divYield)
    : BlackScholesLattice<T>(tree, riskFreeRate, end, steps),
      creditSpread_(creditSpread) {
        QL_REQUIRE(this->pu_<=1.0,
                   "probability (" << this->pu_ << ") higher than one");
        QL_REQUIRE(this->pu_>=0.0,
                   "negative (" << this->pu_ << ") probability");
    }

    template <class T>
    void TsiveriotisFernandesLattice<T>::stepback(
                                          Size i,
                                          const Array& values,
                                          const Array& conversionProbability,
                                          const Array& spreadAdjustedRate,
                                          Array& newValues,
                                          Array& newConversionProbability,
                                          Array& newSpreadAdjustedRate) const {

        for (Size j=0; j<this->size(i); j++) {

            // new conversion probability is calculated via backward
            // induction using up and down probabilities on tree on
            // previous conversion probabilities, ie weighted average
            // of previous probabilities.
            newConversionProbability[j] =
                this->pd_*conversionProbability[j] +
                this->pu_*conversionProbability[j+1];

            // Use blended discounting rate
            newSpreadAdjustedRate[j] =
                newConversionProbability[j] * this->riskFreeRate_ +
                (1-newConversionProbability[j])*(this->riskFreeRate_+creditSpread_);

            newValues[j] =
                (this->pd_*values[j]/(1+(spreadAdjustedRate[j]*this->dt_)))
              + (this->pu_*values[j+1]/(1+(spreadAdjustedRate[j+1]*this->dt_)));

        }
    }

    template <class T>
    void TsiveriotisFernandesLattice<T>::rollback(DiscretizedAsset& asset,
                                                  Time to) const {
        partialRollback(asset,to);
        asset.adjustValues();
    }


    template <class T>
    void TsiveriotisFernandesLattice<T>::partialRollback(DiscretizedAsset& asset,
                                                         Time to) const {

        Time from = asset.time();

        if (close(from,to))
            return;

        QL_REQUIRE(from > to,
                   "cannot roll the asset back to" << to
                   << " (it is already at t = " << from << ")");

        DiscretizedConvertible& convertible =
            dynamic_cast<DiscretizedConvertible&>(asset);

        Integer iFrom = Integer(this->t_.index(from));
        Integer iTo = Integer(this->t_.index(to));

        for (Integer i=iFrom-1; i>=iTo; --i) {

            Array newValues(this->size(i));
            Array newSpreadAdjustedRate(this->size(i));
            Array newConversionProbability(this->size(i));

            stepback(i, convertible.values(),
                     convertible.conversionProbability(),
                     convertible.spreadAdjustedRate(), newValues,
                     newConversionProbability,newSpreadAdjustedRate);

            convertible.time() = this->t_[i];
            convertible.values() = newValues;
            convertible.spreadAdjustedRate() = newSpreadAdjustedRate;
            convertible.conversionProbability() = newConversionProbability;

            // skip the very last adjustment
            if (i != iTo)
                convertible.adjustValues();
        }
    }

}

#endif