This file is indexed.

/usr/share/doc/libplplot11/examples/perl/x21.pl is in libplplot-dev 5.9.9-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#! /usr/bin/env perl 
#
# Demo x21 for the PLplot PDL binding
#
# Grid data demo
#
# Copyright (C) 2004  Rafael Laboissiere
#
# This file is part of PLplot.
#
# PLplot is free software; you can redistribute it and/or modify
# it under the terms of the GNU Library General Public License as published
# by the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PLplot is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public License
# along with PLplot; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

# SYNC: x21c.c 1.12

use PDL;
use PDL::Graphics::PLplot;
use Math::Trig qw [pi];
use Getopt::Long qw [:config pass_through];
use POSIX qw [clock];

sub cmap1_init {
  my $i = pdl ([0.0,    # left boundary
                1.0]);  # right boundary

  my $h = pdl ([240,    # blue -> green -> yellow ->
                0]);    # -> red

  my $l = pdl ([0.6, 0.6]);

  my $s = pdl ([0.8, 0.8]);

  plscmap1n (256);
  plscmap1l (0, $i, $h, $l, $s, pdl ([]));
}

my ($xm, $ym, $xM, $yM);
my $randn = 0;
my $rosen = 0;

sub main {

  my $clev;

  # Options data structure definition. */

  my $pts = 500;
  my $xp = 25;
  my $yp = 20;
  my $nl = 16;
  my $knn_order = 20;
  my $threshold = 1.001;
  my $wmin = -1e3;

  GetOptions ("npts=i"      => \$pts,
              "randn"       => \$randn,
              "rosen"       => \$rosen,
              "nx=i"        => \$xp,
              "ny=i"        => \$yp,
              "nlevel=i"    => \$nl,
              "knn_order=i" => \$knn_order,
              "threshold=f" => \$threshold,
              "help"        => \$help);

  if ($help) {
    print (<<EOT);
$0 options:
    --npts points        Specify number of random points to generate [500]
    --randn              Normal instead of uniform sampling -- the effective
                         number of points will be smaller than the specified.
    --rosen              Generate points from the Rosenbrock function.
    --nx points          Specify grid x dimension [25]
    --ny points          Specify grid y dimension [20]
    --nlevel             Specify number of contour levels [15]
    --knn_order order    Specify the number of neighbors [20]
    --threshold float    Specify what a thin triangle is [1. < [1.001] < 2.]
EOT
    push (@ARGV, "-h");
  }

  unshift (@ARGV, $0);

  @title = ("Cubic Spline Approximation",
            "Delaunay Linear Interpolation",
            "Natural Neighbors Interpolation",
            "KNN Inv. Distance Weighted",
            "3NN Linear Interpolation",
            "4NN Around Inv. Dist. Weighted");

  @opt = (0., 0., 0., 0., 0., 0.);

  $xm = $ym = -0.2;
  $xM = $yM = 0.6;

  plParseOpts (\@ARGV, PL_PARSE_PARTIAL);

  $opt[2] = $wmin;
  $opt[3] = $knn_order;
  $opt[4] = $threshold;

  # Initialize plplot

  plinit ();

  plseed (5489);

  my ($x, $y, $z) = create_data ($pts);    # the sampled data
  my $zmin = min ($z);
  my $zmax = max ($z);

  my ($xg, $yg) = create_grid ($xp, $yp);  # grid the data at
                                           # the output grided data

  plcol0 (1);
  plenv ($xm, $xM, $ym, $yM, 2, 0);
  plcol0 (15);
  pllab ("X", "Y", "The original data sampling");
  plcol0 (2);
  plpoin ($x, $y, 5);
  pladv (0);

  plssub (3, 2);

  for (my $k = 0; $k < 2; $k++) {
    pladv (0);
    for (my $alg = 1; $alg < 7; $alg++) {

      $zg = plgriddata ($x, $y, $z, $xg, $yg, $alg, $opt [$alg - 1]);

      # - CSA can generate NaNs (only interpolates?!).
      # - DTLI and NNI can generate NaNs for points outside the convex hull
      #     of the data points.
      # - NNLI can generate NaNs if a sufficiently thick triangle is not found
      #
      # PLplot should be NaN/Inf aware, but changing it now is quite a job...
      # so, instead of not plotting the NaN regions, a weighted average over
      # the neighbors is done.

      if ($alg == GRID_CSA || $alg == GRID_DTLI
          || $alg == GRID_NNLI || $alg == GRID_NNI) {

	for (my $i = 0; $i < $xp; $i++) {
	  for (my $j = 0; $j < $yp; $j++) {
	    if (not isfinite ($zg->slice ("$i,$j"))) {
              # average (IDW) over the 8 neighbors

	      $zg->slice ("$i,$j") .= 0;
              my $dist = 0;

	      for (my $ii = $i - 1; $ii <= $i + 1 && $ii < $xp; $ii++) {
		for (my $jj = $j - 1; $jj <= $j + 1 && $jj < $yp; $jj++) {
                  my $zgij = $zg->slice ("$ii,$jj");
		  if ($ii >= 0 && $jj >= 0 && isfinite ($zgij)) {
		    $d = (abs ($ii - $i) + abs ($jj - $j)) == 1 ? 1. : 1.4142;
		    $zg->slice ("$i,$j") .= $zg->slice ("$i,$j")
                      + $zgij / ($d * $d);
		    $dist += $d;
		  }
		}
	      }
	      if ($dist != 0.) {
		$zg->slice ("$i,$j") .= $zg->slice ("$i,$j") / $dist;
	      } else {
		$zg->slice ("$i,$j") .= $zmin;
              }
	    }
	  }
	}
      }

      my $lzM = max ($zg);
      my $lzm = min ($zg);

      $lzm = min pdl ([$lzm, $zmin]);
      $lzM = max pdl ([$lzM, $zmax]);

      $lzm = $lzm - 0.01;
      $lzM = $lzM + 0.01;

      plcol0 (1);
      pladv ($alg);

      if ($k == 0) {

        $clev = $lzm + ($lzM - $lzm) * sequence ($nl)/ ($nl - 1);

        plenv0 ($xm, $xM, $ym, $yM, 2, 0);
        plcol0 (15);
        pllab ("X", "Y", $title [$alg - 1]);
        plshades ($zg, $xm, $xM, $ym, $yM,
                  $clev, 1, 0, 1, 1, 0, 0, 0);
        plcol0 (2);

      } else {

        $clev = $lzm + ($lzM - $lzm) * sequence ($nl)/ ($nl - 1);

	cmap1_init ();
	plvpor (0.0, 1.0, 0.0, 0.9);
	plwind (-1.1, 0.75, -0.65, 1.20);
	#
        # For the comparition to be fair, all plots should have the
        # same z values, but to get the max/min of the data generated
        # by all algorithms would imply two passes. Keep it simple.
        #
        # plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60);
        #

	plw3d (1., 1., 1., $xm, $xM, $ym, $yM, $lzm, $lzM, 30.0, -40.0);
	plbox3 (0.0, 0, 0.0, 0, 0.5, 0,
                "bntu", "X", "bntu", "Y", "bcdfntu", "Z");
	plcol0 (15);
	pllab ("", "", $title [$alg - 1]);
	plot3dc ($xg, $yg, $zg, DRAW_LINEXY | MAG_COLOR | BASE_CONT, $clev);
      }
    }
  }

  plend ();
}

sub create_grid {
  my ($px, $py) = @_;
  my ($x, $y);

  $x = $xm + ($xM - $xm) * sequence ($px) / ($px - 1);
  $y = $ym + ($yM - $ym) * sequence ($py) / ($py - 1);

  return ($x, $y);
}

sub create_data {
  my $pts = shift;
  my ($x, $y, $z);

  # generate a vector of pseudo-random numbers 2*$pts long
  my $t = zeroes(2*$pts);
  plrandd($t); # use the PLplot standard random number generator for consistency with other demos

  # Use every other random number for the x vect and y vect.
  # This is done in this funny way to make the results identical
  # to the c version, which calls plrandd once for x, then once for y in a loop.
  my $xt = ($xM-$xm) * $t->mslice([0,(2*$pts)-2,2]);
  my $yt = ($yM-$ym) * $t->mslice([1,(2*$pts)-1,2]);

  if (not $randn) {
    $x = $xt + $xm;
    $y = $yt + $ym;
  } else {    # std=1, meaning that many points are outside the plot range
    $x = sqrt(-2 * log($xt)) * cos(2 * pi * $yt) + $xm;
    $y = sqrt(-2 * log($xt)) * sin(2 * pi * $yt) + $ym;
  }

  if (not $rosen) {
    my $r = sqrt ($x ** 2 + $y ** 2);
    $z = exp (- $r ** 2) * cos (2 * pi * $r);
  } else {
    $z = log ((1 - $x) ** 2) + 100 * ($y - $x ** 2) ** 2;
  }

  return ($x, $y, $z);
}

main ();