This file is indexed.

/usr/share/doc/libplplot11/examples/ocaml/x21.ml is in libplplot-dev 5.9.9-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
(* $Id: x21.ml 11680 2011-03-27 17:57:51Z airwin $
        Grid data demo

   Copyright (C) 2004  Joao Cardoso
   Copyright (C) 2008  Hezekiah M. Carty

   This file is part of PLplot.

   PLplot is free software; you can redistribute it and/or modify
   it under the terms of the GNU Library General Public License as published
   by the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   PLplot is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU Library General Public License for more details.

   You should have received a copy of the GNU Library General Public License
   along with PLplot; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

*)

open Plplot

let pi = atan 1.0 *. 4.0

let is_nan x =
  match classify_float x with
      FP_nan -> true
    | _ -> false

(* Options data structure definition. *)

let pts = 500
let xp = 25
let yp = 20
let nl = 16
let knn_order = 20
let threshold = 1.001
let wmin = -1e3
let xm = -0.2
let ym = -0.2
let xM = 0.6
let yM = 0.6


let cmap1_init () =
  let i = [|0.0; 1.0|] in
  let h = [|240.0; 0.0|] in (* blue -> green -> yellow -> red *)
  let l = [|0.6; 0.6|] in
  let s = [|0.8; 0.8|] in
  plscmap1n 256;
  plscmap1l false i h l s None;
  ()

let create_grid px py =
  let xg =
    Array.init px
      (fun i -> xm +. (xM -. xm) *. float_of_int i /. (float_of_int px -. 1.0))
  in
  let yg =
    Array.init py
      (fun i -> ym +. (yM -. ym) *. float_of_int i /. (float_of_int py -. 1.0))
  in
  (xg, yg)

let create_data pts =
  let x = Array.make pts 0.0 in
  let y = Array.make pts 0.0 in
  let z = Array.make pts 0.0 in
  for i = 0 to pts - 1 do
    let xt = (xM -. xm) *. plrandd () in
    let yt = (yM -. ym) *. plrandd () in
    x.(i) <- xt +. xm;
    y.(i) <- yt +. ym;
    let r = sqrt (x.(i) *. x.(i) +. y.(i) *. y.(i)) in
    z.(i) <- exp (~-.r *. r) *. cos (2.0 *. pi *. r);
  done;
  (x, y, z)

let () =
  (* In the C PLplot API, the interpolation method identifiers are just
     names #define-d as integers.  In the OCaml bindings, the names and their
     related integer values are distinct.  The array provides a mapping to
     make conversion of this example from C easier. *)
  let alg_array =
    [|PL_GRID_CSA; PL_GRID_DTLI; PL_GRID_NNI; PL_GRID_NNIDW; PL_GRID_NNLI;
      PL_GRID_NNAIDW|]
  in
  let title =
    [|
      "Cubic Spline Approximation";
      "Delaunay Linear Interpolation";
      "Natural Neighbors Interpolation";
      "KNN Inv. Distance Weighted";
      "3NN Linear Interpolation";
      "4NN Around Inv. Dist. Weighted";
    |]
  in

  let opt = [|0.0; 0.0; wmin; float_of_int knn_order; threshold; 0.0|] in

  plparseopts Sys.argv [PL_PARSE_FULL];

  (* Initialize plplot *)
  plinit ();

  plseed (5489L);

  (* The sampled data *)
  let x, y, z = create_data pts in
  let zmin = Array.fold_left min infinity z in
  let zmax = Array.fold_left max neg_infinity z in

  (* Grid the data *)
  let xg, yg = create_grid xp yp in

  plcol0 1;
  plenv xm xM ym yM 2 0;
  plcol0 15;
  pllab "X" "Y" "The original data sampling";
  plcol0 2;
  plpoin x y 5;
  pladv 0;

  plssub 3 2;

  for k = 0 to 1 do
    pladv 0;
    for alg = 1 to 6 do
      let named_alg = alg_array.(alg - 1) in
      let zg = plgriddata x y z xg yg named_alg opt.(alg - 1) in

      (* - CSA can generate NaNs (only interpolates?!).
       * - DTLI and NNI can generate NaNs for points outside the convex hull
       *      of the data points.
       * - NNLI can generate NaNs if a sufficiently thick triangle is not found
       *
       * PLplot should be NaN/Inf aware, but changing it now is quite a job...
       * so, instead of not plotting the NaN regions, a weighted average over
       * the neighbors is done.
       *)
      if
        named_alg = PL_GRID_CSA ||
        named_alg = PL_GRID_DTLI ||
        named_alg = PL_GRID_NNLI ||
        named_alg = PL_GRID_NNI
      then (
        for i = 0 to xp - 1 do
          for j = 0 to yp - 1 do
            if is_nan zg.(i).(j) then ( (* average (IDW) over the 8 neighbors *)
              zg.(i).(j) <- 0.0;
              let dist = ref 0.0 in

              for ii = i - 1 to i + 1 do
                if ii < xp then (
                  for jj = j - 1 to j + 1 do
                    if jj < yp then (
                      if ii >= 0 && jj >= 0 && not (is_nan zg.(ii).(jj)) then (
                        let d =
                          if abs (ii - i) + abs (jj - j) = 1 then
                            1.0
                          else
                            1.4142
                        in
                        zg.(i).(j) <- zg.(i).(j) +. zg.(ii).(jj) /. (d *. d);
                        dist := !dist +. d;
                      )
                      else
                        ()
                    )
                  done
                )
              done;
              if !dist <> 0.0 then
                zg.(i).(j) <- zg.(i).(j) /. !dist
              else
                zg.(i).(j) <- zmin
            )
          done
        done
      );

      let lzM, lzm = plMinMax2dGrid zg in

      let lzm = min lzm zmin in
      let lzM = max lzM zmax in

      (* Increase limits slightly to prevent spurious contours
         due to rounding errors *)
      let lzm = lzm -. 0.01 in
      let lzM = lzM +. 0.01 in

      plcol0 1;

      pladv alg;

      if k = 0 then (
        let clev =
          Array.init nl
            (
              fun i ->
                lzm +. (lzM -. lzm) /. float_of_int (nl - 1) *. float_of_int i
            )
        in
        plenv0 xm xM ym yM 2 0;
        plcol0 15;
        pllab "X" "Y" title.(alg - 1);
        plshades zg xm xM ym yM clev 1 0 1 true;
        plcol0 2;
      )
      else (
        let clev =
          Array.init nl
            (
              fun i ->
                lzm +. (lzM -. lzm) /. float_of_int (nl - 1) *. float_of_int i
            )
        in
        cmap1_init ();
        plvpor 0.0 1.0 0.0 0.9;
        plwind (-1.1) 0.75 (-0.65) 1.20;
        (* For the comparison to be fair, all plots should have the
           same z values, but to get the max/min of the data generated
           by all algorithms would imply two passes. Keep it simple. *)

        plw3d 1.0 1.0 1.0 xm xM ym yM lzm lzM 30.0 (-40.0);
        plbox3 "bntu" "X" 0.0 0
               "bntu" "Y" 0.0 0
               "bcdfntu" "Z" 0.5 0;
        plcol0 15;
        pllab "" "" title.(alg - 1);
        plot3dc xg yg zg [PL_DRAW_LINEXY; PL_MAG_COLOR; PL_BASE_CONT] clev;
      );
    done
  done;

  plend ();
  ()