This file is indexed.

/usr/share/doc/libplplot11/examples/lua/x27.lua is in libplplot-dev 5.9.9-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
--[[ $Id: x27.lua 11858 2011-08-05 07:45:34Z andrewross $

	Drawing "spirograph" curves - epitrochoids, cycolids, roulettes

   Copyright (C) 2009  Werner Smekal

  This file is part of PLplot.

  PLplot is free software you can redistribute it and/or modify
  it under the terms of the GNU Library General Public License as published
  by the Free Software Foundation either version 2 of the License, or
  (at your option) any later version.

  PLplot is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU Library General Public License for more details.

  You should have received a copy of the GNU Library General Public License
  along with PLplot if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]

-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")


--------------------------------------------------------------------------
-- Calculate greatest common divisor following pseudo-code for the
-- Euclidian algorithm at http://en.wikipedia.org/wiki/Euclidean_algorithm

function gcd (a,  b)
    a = math.floor(math.abs(a))
    b = math.floor(math.abs(b))
    while b~=0 do
        t = b
        b = math.mod(a,b)
        a = t
    end 
    return a
end

function cycloid()
  -- TODO 
end


function spiro( params, fill )
  NPNT = 2000
  xcoord = {}
  ycoord = {}

  -- Fill the coordinates 
  -- Proper termination of the angle loop very near the beginning
  -- point, see
  -- http://mathforum.org/mathimages/index.php/Hypotrochoid.
  windings = math.floor(math.abs(params[2])/gcd(params[1], params[2]))
  steps    = math.floor(NPNT/windings)
  dphi     = 2*math.pi/steps 

  for i = 1, windings*steps+1 do
    phi       = (i-1) * dphi 
    phiw      = (params[1]-params[2])/params[2]*phi 
    xcoord[i] = (params[1]-params[2])*math.cos(phi) + params[3]*math.cos(phiw) 
    ycoord[i] = (params[1]-params[2])*math.sin(phi) - params[3]*math.sin(phiw) 

    if i == 1 then
        xmin = xcoord[i]
        xmax = xcoord[i]
        ymin = ycoord[i]
        ymax = ycoord[i]
    end
    if xmin>xcoord[i] then xmin = xcoord[i] end 
    if xmax<xcoord[i] then xmax = xcoord[i] end
    if ymin>ycoord[i] then ymin = ycoord[i] end
    if ymax<ycoord[i] then ymax = ycoord[i] end
  end

  xrange_adjust = 0.15*(xmax-xmin)
  xmin = xmin - xrange_adjust
  xmax = xmax + xrange_adjust
  yrange_adjust = 0.15*(ymax-ymin)
  ymin = ymin - yrange_adjust
  ymax = ymax + yrange_adjust

  pl.wind(xmin, xmax, ymin, ymax)

  pl.col0(1)
  if fill == 1 then
      pl.fill(xcoord, ycoord)
  else
      pl.line(xcoord, ycoord)
  end
end


function arcs()
    NSEG = 8

    theta = 0.0
    dtheta = 360.0 / NSEG
    pl.env( -10.0, 10.0, -10.0, 10.0, 1, 0 )

    -- Plot segments of circle in different colors
    for i = 0, NSEG-1 do
        pl.col0( i%2 + 1 )
        pl.arc(0.0, 0.0, 8.0, 8.0, theta, theta + dtheta, 0.0, 0)
        theta = theta + dtheta
    end    

    -- Draw several filled ellipses inside the circle at different
    -- angles.
    a = 3.0
    b = a * math.tan( (dtheta/180.0*math.pi)/2.0 )
    theta = dtheta/2.0
    for i = 0, NSEG-1 do
        pl.col0( 2 - i%2 )
        pl.arc( a*math.cos(theta/180.0*math.pi), a*math.sin(theta/180.0*math.pi), a, b, 0.0, 360.0, theta, 1)
        theta = theta + dtheta
    end

end


----------------------------------------------------------------------------
-- main
--
-- Generates two kinds of plots:
--   - construction of a cycloid (animated)
--   - series of epitrochoids and hypotrochoids
----------------------------------------------------------------------------

-- R, r, p, N 
-- R and r should be integers to give correct termination of the
-- angle loop using gcd.
-- N.B. N is just a place holder since it is no longer used
-- (because we now have proper termination of the angle loop).

params = {
  { 21,  7,  7,  3 },  -- Deltoid 
  { 21,  7, 10,  3 },
  { 21, -7, 10,  3 },
  { 20,  3,  7, 20 },
  { 20,  3, 10, 20 },
  { 20, -3, 10, 20 },
  { 20, 13,  7, 20 },
  { 20, 13, 20, 20 },
  { 20,-13, 20, 20 } } 

-- plplot initialization 

-- Parse and process command line arguments 
pl.parseopts(arg, pl.PL_PARSE_FULL)

-- Initialize plplot 
pl.init()

-- Illustrate the construction of a cycloid 
cycloid()

-- Loop over the various curves
-- First an overview, then all curves one by one

pl.ssub(3, 3)  -- Three by three window 

fill = 0
for i = 1, 9 do
  pl.adv(0) 
  pl.vpor(0, 1, 0, 1) 
  spiro(params[i], fill) 
end

pl.adv(0) 
pl.ssub(1, 1)  -- One window per curve 

for i = 1, 9 do
  pl.adv(0) 
  pl.vpor(0, 1, 0, 1) 
  spiro(params[i], fill) 
end

-- fill the curves.
fill = 1
pl.adv(0) 
pl.ssub(1, 1)  -- One window per curve 

for i = 1, 9 do
  pl.adv(0) 
  pl.vpor(0, 1, 0, 1) 
  spiro(params[i], fill) 
end

arcs()

pl.plend()