This file is indexed.

/usr/share/doc/libplplot11/examples/d/x18d.d is in libplplot-dev 5.9.9-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
// $Id: x18d.d 11684 2011-03-31 04:15:32Z airwin $
//
//      3-d line and point plot demo.  Adapted from x08c.c.
//

import std.math;
import std.string;

import plplot;

int opt[]   = [ 1, 0, 1, 0 ];
PLFLT alt[] = [ 20.0, 35.0, 50.0, 65.0 ];
PLFLT az[]  = [ 30.0, 40.0, 50.0, 60.0 ];

//--------------------------------------------------------------------------
// main
//
// Does a series of 3-d plots for a given data set, with different
// viewing options in each plot.
//--------------------------------------------------------------------------
int main( char[][] args )
{
    const int npts = 1000;

    // Parse and process command line arguments
    plparseopts( args, PL_PARSE_FULL );

    // Initialize plplot
    plinit();

    for ( int k = 0; k < 4; k++ )
        test_poly( k );

    PLFLT[] x = new PLFLT[npts];
    PLFLT[] y = new PLFLT[npts];
    PLFLT[] z = new PLFLT[npts];

    // From the mind of a sick and twisted physicist...
    PLFLT r;
    for ( int i = 0; i < npts; i++ )
    {
        z[i] = -1. + 2. * i / npts;

        // Pick one ...
        // r = 1. - cast(PLFLT)i/npts;
        r = z[i];

        x[i] = r * cos( 2. * PI * 6. * i / npts );
        y[i] = r * sin( 2. * PI * 6. * i / npts );
    }

    for ( int k = 0; k < 4; k++ )
    {
        pladv( 0 );
        plvpor( 0.0, 1.0, 0.0, 0.9 );
        plwind( -1.0, 1.0, -0.9, 1.1 );
        plcol0( 1 );
        plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k] );
        plbox3( "bnstu", "x axis", 0.0, 0,
            "bnstu", "y axis", 0.0, 0,
            "bcdmnstuv", "z axis", 0.0, 0 );

        plcol0( 2 );

        if ( opt[k] )
        {
            plline3( x, y, z );
        }
        else
        {
            // U+22C5 DOT OPERATOR.
            plstring3( x, y, z, "⋅" );
        }

        plcol0( 3 );
        plmtex( "t", 1.0, 0.5, 0.5, format( "#frPLplot Example 18 - Alt=%.0f, Az=%.0f", alt[k], az[k] ) );
    }

    plend();

    return 0;
}

void test_poly( int k )
{
    PLINT draw[][] = [ [ 1, 1, 1, 1 ],
                       [ 1, 0, 1, 0 ],
                       [ 0, 1, 0, 1 ],
                       [ 1, 1, 0, 0 ] ];

    PLFLT[] x = new PLFLT[5];
    PLFLT[] y = new PLFLT[5];
    PLFLT[] z = new PLFLT[5];

    pladv( 0 );
    plvpor( 0.0, 1.0, 0.0, 0.9 );
    plwind( -1.0, 1.0, -0.9, 1.1 );
    plcol0( 1 );
    plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, alt[k], az[k] );
    plbox3( "bnstu", "x axis", 0.0, 0,
        "bnstu", "y axis", 0.0, 0,
        "bcdmnstuv", "z axis", 0.0, 0 );

    plcol0( 2 );

    PLFLT theta( int a )
    {
        return 2 * PI * a / 20;
    }
    PLFLT phi( int a )
    {
        return PI * a / 20.1;
    }

    for ( int i = 0; i < 20; i++ )
    {
        for ( int j = 0; j < 20; j++ )
        {
            x[0] = sin( phi( j ) ) * cos( theta( i ) );
            y[0] = sin( phi( j ) ) * sin( theta( i ) );
            z[0] = cos( phi( j ) );

            x[1] = sin( phi( j + 1 ) ) * cos( theta( i ) );
            y[1] = sin( phi( j + 1 ) ) * sin( theta( i ) );
            z[1] = cos( phi( j + 1 ) );

            x[2] = sin( phi( j + 1 ) ) * cos( theta( i + 1 ) );
            y[2] = sin( phi( j + 1 ) ) * sin( theta( i + 1 ) );
            z[2] = cos( phi( j + 1 ) );

            x[3] = sin( phi( j ) ) * cos( theta( i + 1 ) );
            y[3] = sin( phi( j ) ) * sin( theta( i + 1 ) );
            z[3] = cos( phi( j ) );

            x[4] = sin( phi( j ) ) * cos( theta( i ) );
            y[4] = sin( phi( j ) ) * sin( theta( i ) );
            z[4] = cos( phi( j ) );

            plpoly3( x, y, z, draw[k], 1 );
        }
    }

    plcol0( 3 );
    plmtex( "t", 1.0, 0.5, 0.5, "unit radius sphere" );
}