This file is indexed.

/usr/include/d2/4.6/std/random.d is in libphobos2-4.6-dev 0.29.1-4.6.3-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
// Written in the D programming language.

/**
Facilities for random number generation. The old-style functions
$(D_PARAM rand_seed) and $(D_PARAM rand) will soon be deprecated as
they rely on global state and as such are subjected to various
thread-related issues.

The new-style generator objects hold their own state so they are
immune of threading issues. The generators feature a number of
well-known and well-documented methods of generating random
numbers. An overall fast and reliable means to generate random numbers
is the $(D_PARAM Mt19937) generator, which derives its name from
"$(LUCKY Mersenne Twister) with a period of 2 to the power of
19937". In memory-constrained situations, $(LUCKY linear congruential)
generators such as $(D MinstdRand0) and $(D MinstdRand) might be
useful. The standard library provides an alias $(D_PARAM Random) for
whichever generator it considers the most fit for the target
environment.

Example:

----
// Generate a uniformly-distributed integer in the range [0, 14]
auto i = uniform(0, 15);
// Generate a uniformly-distributed real in the range [0, 100$(RPAREN)
// using a specific random generator
Random gen;
auto r = uniform(0.0L, 100.0L, gen);
----

In addition to random number generators, this module features
distributions, which skew a generator's output statistical
distribution in various ways. So far the uniform distribution for
integers and real numbers have been implemented.

Source:    $(PHOBOSSRC std/_random.d)

Macros:

WIKI = Phobos/StdRandom


Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
License:   <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
Authors:   $(WEB erdani.org, Andrei Alexandrescu)
           Masahiro Nakagawa (Xorshift randome generator)
Credits:   The entire random number library architecture is derived from the
           excellent $(WEB open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf, C++0X)
           random number facility proposed by Jens Maurer and contributed to by
           researchers at the Fermi laboratory(excluding Xorshift).
*/
/*
         Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
   (See accompanying file LICENSE_1_0.txt or copy at
         http://www.boost.org/LICENSE_1_0.txt)
*/
module std.random;

import std.algorithm, std.c.time, std.conv, std.datetime, std.exception,
       std.math, std.numeric, std.process, std.range, std.stdio, std.traits,
       core.thread;

version(unittest) import std.typetuple;


// Segments of the code in this file Copyright (c) 1997 by Rick Booth
// From "Inner Loops" by Rick Booth, Addison-Wesley

// Work derived from:

/*
   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)
   or init_by_array(init_key, key_length).

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote
        products derived from this software without specific prior written
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


   Any feedback is very welcome.
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/

version (Win32)
{
    extern(Windows) int QueryPerformanceCounter(ulong *count);
}

version (Posix)
{
    private import core.sys.posix.sys.time;
}

/**
Linear Congruential generator.
 */
struct LinearCongruentialEngine(UIntType, UIntType a, UIntType c, UIntType m)
{
    /// Does this generator have a fixed range? ($(D_PARAM true)).
    enum bool hasFixedRange = true;
    /// Lowest generated value ($(D 1) if $(D c == 0), $(D 0) otherwise).
    enum UIntType min = ( c == 0 ? 1 : 0 );
    /// Highest generated value ($(D modulus - 1)).
    enum UIntType max = m - 1;
/**
The parameters of this distribution. The random number is $(D_PARAM x
= (x * multipler + increment) % modulus).
 */
    enum UIntType multiplier = a;
    ///ditto
    enum UIntType increment = c;
    ///ditto
    enum UIntType modulus = m;

    static assert(isIntegral!(UIntType));
    static assert(m == 0 || a < m);
    static assert(m == 0 || c < m);
    static assert(m == 0 ||
            (cast(ulong)a * (m-1) + c) % m == (c < a ? c - a + m : c - a));

    // Check for maximum range
    private static ulong gcd(ulong a, ulong b) {
        while (b) {
            auto t = b;
            b = a % b;
            a = t;
        }
        return a;
    }

    private static ulong primeFactorsOnly(ulong n) {
        ulong result = 1;
        ulong iter = 2;
        for (; n >= iter * iter; iter += 2 - (iter == 2)) {
            if (n % iter) continue;
            result *= iter;
            do {
                n /= iter;
            } while (n % iter == 0);
        }
        return result * n;
    }

    unittest {
        static assert(primeFactorsOnly(100) == 10);
        //writeln(primeFactorsOnly(11));
        static assert(primeFactorsOnly(11) == 11);
        static assert(primeFactorsOnly(7 * 7 * 7 * 11 * 15 * 11) == 7 * 11 * 15);
        static assert(primeFactorsOnly(129 * 2) == 129 * 2);
        // enum x = primeFactorsOnly(7 * 7 * 7 * 11 * 15);
        // static assert(x == 7 * 11 * 15);
    }

    private static bool properLinearCongruentialParameters(ulong m,
            ulong a, ulong c) {
        if (m == 0)
        {
            static if (is(UIntType == uint))
            {
                // Assume m is uint.max + 1
                m = (1uL << 32);
            }
            else
            {
                return false;
            }
        }
        // Bounds checking
        if (a == 0 || a >= m || c >= m) return false;
        // c and m are relatively prime
        if (c > 0 && gcd(c, m) != 1) return false;
        // a - 1 is divisible by all prime factors of m
        if ((a - 1) % primeFactorsOnly(m)) return false;
        // if a - 1 is multiple of 4, then m is a  multiple of 4 too.
        if ((a - 1) % 4 == 0 && m % 4) return false;
        // Passed all tests
        return true;
    }

    // check here
    static assert(c == 0 || properLinearCongruentialParameters(m, a, c),
            "Incorrect instantiation of LinearCongruentialEngine");

/**
Constructs a $(D_PARAM LinearCongruentialEngine) generator seeded with
$(D x0).
 */
    this(UIntType x0)
    {
        seed(x0);
    }

/**
   (Re)seeds the generator.
*/
    void seed(UIntType x0 = 1)
    {
        static if (c == 0)
        {
            enforce(x0, "Invalid (zero) seed for "
                    ~ LinearCongruentialEngine.stringof);
        }
        _x = modulus ? (x0 % modulus) : x0;
        popFront;
    }

/**
   Advances the random sequence.
*/
    void popFront()
    {
        static if (m)
        {
            static if (is(UIntType == uint) && m == uint.max)
            {
                immutable ulong
                    x = (cast(ulong) a * _x + c),
                    v = x >> 32,
                    w = x & uint.max;
                immutable y = cast(uint)(v + w);
                _x = (y < v || y == uint.max) ? (y + 1) : y;
            }
            else static if (is(UIntType == uint) && m == int.max)
            {
                immutable ulong
                    x = (cast(ulong) a * _x + c),
                    v = x >> 31,
                    w = x & int.max;
                immutable uint y = cast(uint)(v + w);
                _x = (y >= int.max) ? (y - int.max) : y;
            }
            else
            {
                _x = cast(UIntType) ((cast(ulong) a * _x + c) % m);
            }
        }
        else
        {
            _x = a * _x + c;
        }
    }

/**
   Returns the current number in the random sequence.
*/
    @property UIntType front()
    {
        return _x;
    }

///
    @property typeof(this) save()
    {
        return this;
    }

/**
Always $(D false) (random generators are infinite ranges).
 */
    enum bool empty = false;

/**
   Compares against $(D_PARAM rhs) for equality.
 */
    bool opEquals(ref const LinearCongruentialEngine rhs) const
    {
        return _x == rhs._x;
    }

    private UIntType _x = m ? (a + c) % m : (a + c);
}

/**
Define $(D_PARAM LinearCongruentialEngine) generators with well-chosen
parameters. $(D MinstdRand0) implements Park and Miller's "minimal
standard" $(WEB
wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator,
generator) that uses 16807 for the multiplier. $(D MinstdRand)
implements a variant that has slightly better spectral behavior by
using the multiplier 48271. Both generators are rather simplistic.

Example:

----
// seed with a constant
auto rnd0 = MinstdRand0(1);
auto n = rnd0.front; // same for each run
// Seed with an unpredictable value
rnd0.seed(unpredictableSeed);
n = rnd0.front; // different across runs
----
 */
alias LinearCongruentialEngine!(uint, 16807, 0, 2147483647) MinstdRand0;
/// ditto
alias LinearCongruentialEngine!(uint, 48271, 0, 2147483647) MinstdRand;

unittest
{
    static assert(isForwardRange!MinstdRand);

    // The correct numbers are taken from The Database of Integer Sequences
    // http://www.research.att.com/~njas/sequences/eisBTfry00128.txt
    auto checking0 = [
        16807UL,282475249,1622650073,984943658,1144108930,470211272,
        101027544,1457850878,1458777923,2007237709,823564440,1115438165,
        1784484492,74243042,114807987,1137522503,1441282327,16531729,
        823378840,143542612 ];
    //auto rnd0 = MinstdRand0(1);
    MinstdRand0 rnd0;

    foreach (e; checking0)
    {
        assert(rnd0.front == e);
        rnd0.popFront;
    }
    // Test the 10000th invocation
    // Correct value taken from:
    // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf
    rnd0.seed;
    popFrontN(rnd0, 9999);
    assert(rnd0.front == 1043618065);

    // Test MinstdRand
    auto checking = [48271UL,182605794,1291394886,1914720637,2078669041,
                     407355683];
    //auto rnd = MinstdRand(1);
    MinstdRand rnd;
    foreach (e; checking)
    {
        assert(rnd.front == e);
        rnd.popFront;
    }

    // Test the 10000th invocation
    // Correct value taken from:
    // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf
    rnd.seed;
    popFrontN(rnd, 9999);
    assert(rnd.front == 399268537);
}

/**
The $(LUCKY Mersenne Twister) generator.
 */
struct MersenneTwisterEngine(
    UIntType, size_t w, size_t n, size_t m, size_t r,
    UIntType a, size_t u, size_t s,
    UIntType b, size_t t,
    UIntType c, size_t l)
{
    static assert(UIntType.min == 0);
/**
Parameter for the generator.
*/
    enum size_t wordSize = w;
    enum size_t stateSize = n;
    enum size_t shiftSize = m;
    enum size_t maskBits = r;
    enum UIntType xorMask = a;
    enum UIntType temperingU = u;
    enum size_t temperingS = s;
    enum UIntType temperingB = b;
    enum size_t temperingT = t;
    enum UIntType temperingC = c;
    enum size_t temperingL = l;

    /// Smallest generated value (0).
    enum UIntType min = 0;
    /// Largest generated value.
    enum UIntType max =
        w == UIntType.sizeof * 8 ? UIntType.max : (1u << w) - 1;
    /// The default seed value.
    enum UIntType defaultSeed = 5489u;

    static assert(1 <= m && m <= n);
    static assert(0 <= r && 0 <= u && 0 <= s && 0 <= t && 0 <= l);
    static assert(r <= w && u <= w && s <= w && t <= w && l <= w);
    static assert(0 <= a && 0 <= b && 0 <= c);
    static assert(a <= max && b <= max && c <= max);

/**
   Constructs a MersenneTwisterEngine object.
*/
    this(UIntType value)
    {
        seed(value);
    }

/**
   Seeds a MersenneTwisterEngine object.
*/
    void seed(UIntType value = defaultSeed)
    {
        static if (w == UIntType.sizeof * 8)
        {
            mt[0] = value;
        }
        else
        {
            static assert(max + 1 > 0);
            mt[0] = value % (max + 1);
        }
        for (mti = 1; mti < n; ++mti) {
            mt[mti] =
                cast(UIntType)
                (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> (w - 2))) + mti);
            /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
            /* In the previous versions, MSBs of the seed affect   */
            /* only MSBs of the array mt[].                        */
            /* 2002/01/09 modified by Makoto Matsumoto             */
            //mt[mti] &= ResultType.max;
            /* for >32 bit machines */
        }
        popFront;
    }

/**
   Advances the generator.
*/
    void popFront()
    {
        if (mti == size_t.max) seed();
        enum UIntType
            upperMask = ~((cast(UIntType) 1u <<
                           (UIntType.sizeof * 8 - (w - r))) - 1),
            lowerMask = (cast(UIntType) 1u << r) - 1;
        static immutable UIntType mag01[2] = [0x0UL, a];

        ulong y = void;

        if (mti >= n)
        {
            /* generate N words at one time */

            int kk = 0;
            const limit1 = n - m;
            for (; kk < limit1; ++kk)
            {
                y = (mt[kk] & upperMask)|(mt[kk + 1] & lowerMask);
                mt[kk] = cast(UIntType) (mt[kk + m] ^ (y >> 1)
                        ^ mag01[cast(UIntType) y & 0x1U]);
            }
            const limit2 = n - 1;
            for (; kk < limit2; ++kk)
            {
                y = (mt[kk] & upperMask)|(mt[kk + 1] & lowerMask);
                mt[kk] = cast(UIntType) (mt[kk + (m -n)] ^ (y >> 1)
                                         ^ mag01[cast(UIntType) y & 0x1U]);
            }
            y = (mt[n -1] & upperMask)|(mt[0] & lowerMask);
            mt[n - 1] = cast(UIntType) (mt[m - 1] ^ (y >> 1)
                                        ^ mag01[cast(UIntType) y & 0x1U]);

            mti = 0;
        }

        y = mt[mti++];

        /* Tempering */
        y ^= (y >> temperingU);
        y ^= (y << temperingS) & temperingB;
        y ^= (y << temperingT) & temperingC;
        y ^= (y >> temperingL);

        _y = cast(UIntType) y;
    }

/**
   Returns the current random value.
 */
    @property UIntType front()
    {
        if (mti == size_t.max) seed();
        return _y;
    }

///
    @property typeof(this) save()
    {
        return this;
    }

/**
Always $(D false).
 */
    enum bool empty = false;

    private UIntType mt[n];
    private size_t mti = size_t.max; /* means mt is not initialized */
    UIntType _y = UIntType.max;
}

/**
A $(D MersenneTwisterEngine) instantiated with the parameters of the
original engine $(WEB math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html,
MT19937), generating uniformly-distributed 32-bit numbers with a
period of 2 to the power of 19937. Recommended for random number
generation unless memory is severely restricted, in which case a $(D
LinearCongruentialEngine) would be the generator of choice.

Example:

----
// seed with a constant
Mt19937 gen;
auto n = gen.front; // same for each run
// Seed with an unpredictable value
gen.seed(unpredictableSeed);
n = gen.front; // different across runs
----
 */
alias MersenneTwisterEngine!(uint, 32, 624, 397, 31, 0x9908b0df, 11, 7,
                             0x9d2c5680, 15, 0xefc60000, 18)
    Mt19937;

unittest
{
    Mt19937 gen;
    popFrontN(gen, 9999);
    assert(gen.front == 4123659995);
}

unittest
{
    uint a, b;
    {
        Mt19937 gen;
        a = gen.front;
    }
    {
        Mt19937 gen;
        gen.popFront;
        //popFrontN(gen, 1);  // skip 1 element
        b = gen.front;
    }
    assert(a != b);
}


/**
 * Xorshift generator using 32bit algorithm.
 *
 * Implemented according to $(WEB www.jstatsoft.org/v08/i14/paper, Xorshift RNGs).
 *
 * $(BOOKTABLE $(TEXTWITHCOMMAS Supporting bits are below, $(D bits) means second parameter of XorshiftEngine.),
 *  $(TR $(TH bits) $(TH period))
 *  $(TR $(TD 32)   $(TD 2^32 - 1))
 *  $(TR $(TD 64)   $(TD 2^64 - 1))
 *  $(TR $(TD 96)   $(TD 2^96 - 1))
 *  $(TR $(TD 128)  $(TD 2^128 - 1))
 *  $(TR $(TD 160)  $(TD 2^160 - 1))
 *  $(TR $(TD 192)  $(TD 2^192 - 2^32))
 * )
 */
struct XorshiftEngine(UIntType, UIntType bits, UIntType a, UIntType b, UIntType c)
{
    static assert(bits == 32 || bits == 64 || bits == 96 || bits == 128 || bits == 160 || bits == 192,
                  "Supporting bits are 32, 64, 96, 128, 160 and 192. " ~ to!string(bits) ~ " is not supported.");


  public:
    /// Always $(D false) (random generators are infinite ranges).
    enum empty = false;
    /// Smallest generated value.
    enum UIntType min = 0;
    /// Largest generated value.
    enum UIntType max = UIntType.max;


  private:
    enum Size = bits / 32;

    static if (bits == 32) {
        UIntType[Size] seeds_ = [2463534242];
    } else static if (bits == 64) {
        UIntType[Size] seeds_ = [123456789, 362436069];
    } else static if (bits == 96) {
        UIntType[Size] seeds_ = [123456789, 362436069, 521288629];
    } else static if (bits == 128) {
        UIntType[Size] seeds_ = [123456789, 362436069, 521288629, 88675123];
    } else static if (bits == 160) {
        UIntType[Size] seeds_ = [123456789, 362436069, 521288629, 88675123, 5783321];
    } else { // 192bits
        UIntType[Size] seeds_ = [123456789, 362436069, 521288629, 88675123, 5783321, 6615241];
        UIntType       value_;
    }


  public:
    /**
     * Constructs a $(D XorshiftEngine) generator seeded with $(D_PARAM x0).
     */
    @safe
    this(UIntType x0)
    {
        seed(x0);
    }


    /**
     * (Re)seeds the generator.
     */
    @safe
    nothrow void seed(UIntType x0)
    {
        // Initialization routine from MersenneTwisterEngine.
        foreach (i, e; seeds_)
            seeds_[i] = x0 = cast(UIntType)(1812433253U * (x0 ^ (x0 >> 30)) + i + 1);

        // All seeds must not be 0.
        sanitizeSeeds(seeds_);

        popFront();
    }


    /**
     * Returns the current number in the random sequence.
     */
    @property @safe
    nothrow UIntType front()
    {
        static if (bits == 192) {
            return value_;
        } else {
            return seeds_[Size - 1];
        }
    }


    /**
     * Advances the random sequence.
     */
    @safe
    nothrow void popFront()
    {
        UIntType temp;

        static if (bits == 32) {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            temp      = temp >> b;
            seeds_[0] = temp ^ (temp << c);
        } else static if (bits == 64) {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[1] ^ (seeds_[1] >> c) ^ temp ^ (temp >> b);
        } else static if (bits == 96) {
            temp      = seeds_[0] ^ (seeds_[0] << a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[2] ^ (seeds_[2] >> c) ^ temp ^ (temp >> b);
        } else static if (bits == 128){
            temp      = seeds_[0] ^ (seeds_[0] << a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[3];
            seeds_[3] = seeds_[3] ^ (seeds_[3] >> c) ^ temp ^ (temp >> b);
        } else static if (bits == 160){
            temp      = seeds_[0] ^ (seeds_[0] >> a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[3];
            seeds_[3] = seeds_[4];
            seeds_[4] = seeds_[4] ^ (seeds_[4] >> c) ^ temp ^ (temp >> b);
        } else { // 192bits
            temp      = seeds_[0] ^ (seeds_[0] >> a);
            seeds_[0] = seeds_[1];
            seeds_[1] = seeds_[2];
            seeds_[2] = seeds_[3];
            seeds_[3] = seeds_[4];
            seeds_[4] = seeds_[4] ^ (seeds_[4] << c) ^ temp ^ (temp << b);
            value_    = seeds_[4] + (seeds_[5] += 362437);
        }
    }


    /**
     * Captures a range state.
     */
    @property
    typeof(this) save()
    {
        return this;
    }


    /**
     * Compares against $(D_PARAM rhs) for equality.
     */
    @safe
    nothrow bool opEquals(ref const XorshiftEngine rhs) const
    {
        return seeds_ == rhs.seeds_;
    }


  private:
    @safe
    static nothrow void sanitizeSeeds(ref UIntType[Size] seeds)
    {
        for (uint i; i < seeds.length; i++) {
            if (seeds[i] == 0)
                seeds[i] = i + 1;
        }
    }


    unittest
    {
        static if (Size  ==  4)  // Other bits too
        {
            UIntType[Size] seeds = [1, 0, 0, 4];

            sanitizeSeeds(seeds);

            assert(seeds == [1, 2, 3, 4]);
        }
    }
}


/**
 * Define $(D XorshiftEngine) generators with well-chosen parameters. See each bits examples of "Xorshift RNGs".
 * $(D Xorshift) is a Xorshift128's alias because 128bits implementation is mostly used.
 *
 * Example:
 * -----
 * // Seed with a constant
 * auto rnd = Xorshift(1);
 * auto num = rnd.front;  // same for each run
 *
 * // Seed with an unpredictable value
 * rnd.seed(unpredictableSeed());
 * num = rnd.front; // different across runs
 * -----
 */
alias XorshiftEngine!(uint, 32,  13, 17, 5)  Xorshift32;
alias XorshiftEngine!(uint, 64,  10, 13, 10) Xorshift64;   /// ditto
alias XorshiftEngine!(uint, 96,  10, 5,  26) Xorshift96;   /// ditto
alias XorshiftEngine!(uint, 128, 11, 8,  19) Xorshift128;  /// ditto
alias XorshiftEngine!(uint, 160, 2,  1,  4)  Xorshift160;  /// ditto
alias XorshiftEngine!(uint, 192, 2,  1,  4)  Xorshift192;  /// ditto
alias Xorshift128 Xorshift;                                /// ditto


unittest
{
    static assert(isForwardRange!Xorshift);

    // Result from reference implementation.
    auto checking = [
        [2463534242UL, 267649, 551450, 53765, 108832, 215250, 435468, 860211, 660133, 263375],
        [362436069UL, 2113136921, 19051112, 3010520417, 951284840, 1213972223, 3173832558, 2611145638, 2515869689, 2245824891],
        [521288629UL, 1950277231, 185954712, 1582725458, 3580567609, 2303633688, 2394948066, 4108622809, 1116800180, 3357585673],
        [88675123UL, 3701687786, 458299110, 2500872618, 3633119408, 516391518, 2377269574, 2599949379, 717229868, 137866584],
        [5783321UL, 93724048, 491642011, 136638118, 246438988, 238186808, 140181925, 533680092, 285770921, 462053907],
        [0UL, 246875399, 3690007200, 1264581005, 3906711041, 1866187943, 2481925219, 2464530826, 1604040631, 3653403911]
    ];

    foreach (I, Type; TypeTuple!(Xorshift32, Xorshift64, Xorshift96, Xorshift128, Xorshift160, Xorshift192)) {
        Type rnd;

        foreach (e; checking[I]) {
            assert(rnd.front == e);
            rnd.popFront();
        }
    }
}


/**
A "good" seed for initializing random number engines. Initializing
with $(D_PARAM unpredictableSeed) makes engines generate different
random number sequences every run.

Example:

----
auto rnd = Random(unpredictableSeed);
auto n = rnd.front;
...
----
*/

uint unpredictableSeed()
{
    static bool seeded;
    static MinstdRand0 rand;
    if (!seeded) {
        uint threadID = cast(uint) cast(void*) Thread.getThis();
        rand.seed((getpid + threadID) ^ cast(uint) Clock.currSystemTick().length);
        seeded = true;
    }
    rand.popFront;
    return cast(uint) (Clock.currSystemTick().length ^ rand.front);
}

unittest
{
    // not much to test here
    auto a = unpredictableSeed;
    static assert(is(typeof(a) == uint));
}

/**
The "default", "favorite", "suggested" random number generator type on
the current platform. It is an alias for one of the previously-defined
generators. You may want to use it if (1) you need to generate some
nice random numbers, and (2) you don't care for the minutiae of the
method being used.
 */

alias Mt19937 Random;

/**
Global random number generator used by various functions in this
module whenever no generator is specified. It is allocated per-thread
and initialized to an unpredictable value for each thread.
 */
ref Random rndGen()
{
    static Random result;
    static bool initialized;
    if (!initialized)
    {
        result = Random(unpredictableSeed);
        initialized = true;
    }
    return result;
}

/**
Generates a number between $(D a) and $(D b). The $(D boundaries)
parameter controls the shape of the interval (open vs. closed on
either side). Valid values for $(D boundaries) are $(D "[]"), $(D
"$(LPAREN)]"), $(D "[$(RPAREN)"), and $(D "()"). The default interval
is closed to the left and open to the right. The version that does not
take $(D urng) uses the default generator $(D rndGen).

Example:

----
Random gen(unpredictableSeed);
// Generate an integer in [0, 1023]
auto a = uniform(0, 1024, gen);
// Generate a float in [0, 1$(RPAREN)
auto a = uniform(0.0f, 1.0f, gen);
----
 */
auto uniform(string boundaries = "[)", T1, T2)
(T1 a, T2 b)  if (!is(CommonType!(T1, T2) == void))
{
    return uniform!(boundaries, T1, T2, Random)(a, b, rndGen);
}

unittest
{
    MinstdRand0 gen;
    foreach (i; 0 .. 20)
    {
        auto x = uniform(0., 15., gen);
        assert(0 <= x && x < 15);
    }
    foreach (i; 0 .. 20)
    {
        auto x = uniform!"[]"('a', 'z', gen);
        assert('a' <= x && x <= 'z');
    }

        foreach (i; 0 .. 20)
    {
        auto x = uniform('a', 'z', gen);
        assert('a' <= x && x < 'z');
    }

        foreach(i; 0 .. 20) {
            immutable ubyte a = 0;
                immutable ubyte b = 15;
            auto x = uniform(a, b, gen);
                assert(a <= x && x < b);
        }
}

// Implementation of uniform for floating-point types
/// ditto
auto uniform(string boundaries = "[)",
        T1, T2, UniformRandomNumberGenerator)
(T1 a, T2 b, ref UniformRandomNumberGenerator urng)
if (isFloatingPoint!(CommonType!(T1, T2)))
{
    alias Unqual!(CommonType!(T1, T2)) NumberType;
    static if (boundaries[0] == '(')
    {
        NumberType _a = nextafter(cast(NumberType) a, NumberType.infinity);
    }
    else
    {
        NumberType _a = a;
    }
    static if (boundaries[1] == ')')
    {
        NumberType _b = nextafter(cast(NumberType) b, -NumberType.infinity);
    }
    else
    {
        NumberType _b = b;
    }
    enforce(_a <= _b,
            text("std.random.uniform(): invalid bounding interval ",
                    boundaries[0], a, ", ", b, boundaries[1]));
    NumberType result =
        _a + (_b - _a) * cast(NumberType) (urng.front - urng.min)
        / (urng.max - urng.min);
    urng.popFront();
    return result;
}

// Implementation of uniform for integral types
auto uniform(string boundaries = "[)",
        T1, T2, UniformRandomNumberGenerator)
(T1 a, T2 b, ref UniformRandomNumberGenerator urng)
if (isIntegral!(CommonType!(T1, T2)) || isSomeChar!(CommonType!(T1, T2)))
{
    alias Unqual!(CommonType!(T1, T2)) ResultType;
    // We handle the case "[)' as the common case, and we adjust all
    // other cases to fit it.
    static if (boundaries[0] == '(')
    {
        enforce(cast(ResultType) a < ResultType.max,
                text("std.random.uniform(): invalid left bound ", a));
        ResultType min = cast(ResultType) a + 1;
    }
    else
    {
        ResultType min = a;
    }
    static if (boundaries[1] == ']')
    {
        enforce(min <= cast(ResultType) b,
                text("std.random.uniform(): invalid bounding interval ",
                        boundaries[0], a, ", ", b, boundaries[1]));
        if (b == ResultType.max && min == ResultType.min)
        {
            // Special case - all bits are occupied
            return .uniform!ResultType(urng);
        }
        auto count = unsigned(b - min) + 1u;
        static assert(count.min == 0);
    }
    else
    {
        enforce(min < cast(ResultType) b,
                text("std.random.uniform(): invalid bounding interval ",
                        boundaries[0], a, ", ", b, boundaries[1]));
        auto count = unsigned(b - min);
        static assert(count.min == 0);
    }
    assert(count != 0);
    if (count == 1) return min;
    alias typeof(count) CountType;
    static assert(CountType.min == 0);
    auto bucketSize = 1u + (CountType.max - count + 1) / count;
    CountType r;
    do
    {
        r = cast(CountType) (uniform!CountType(urng) / bucketSize);
    }
    while (r >= count);
    return cast(typeof(return)) (min + r);
}

unittest
{
    auto gen = Mt19937(unpredictableSeed);
    static assert(isForwardRange!(typeof(gen)));

    auto a = uniform(0, 1024, gen);
    assert(0 <= a && a <= 1024);
    auto b = uniform(0.0f, 1.0f, gen);
    assert(0 <= b && b < 1, to!string(b));
    auto c = uniform(0.0, 1.0);
    assert(0 <= c && c < 1);

    foreach(T; TypeTuple!(char, wchar, dchar, byte, ubyte, short, ushort,
                          int, uint, long, ulong, float, double, real))
    {
        T lo = 0, hi = 100;
        T init = uniform(lo, hi);
        size_t i = 50;
        while (--i && uniform(lo, hi) == init) {}
        assert(i > 0);
    }
}

/**
Generates a uniformly-distributed number in the range $(D [T.min,
T.max]) for any integral type $(D T). If no random number generator is
passed, uses the default $(D rndGen).
 */
auto uniform(T, UniformRandomNumberGenerator)
(ref UniformRandomNumberGenerator urng)
if (isIntegral!T || isSomeChar!T)
{
    auto r = urng.front;
    urng.popFront();
    static if (T.sizeof <= r.sizeof)
    {
        return cast(T) r;
    }
    else
    {
        static assert(T.sizeof == 8 && r.sizeof == 4);
        T r1 = urng.front | (cast(T)r << 32);
        urng.popFront();
        return r1;
    }
}

/// Ditto
auto uniform(T)()
if (isIntegral!T || isSomeChar!T)
{
    return uniform!T(rndGen);
}

unittest
{
    foreach(T; TypeTuple!(char, wchar, dchar, byte, ubyte, short, ushort,
                          int, uint, long, ulong))
    {
        T init = uniform!T();
        size_t i = 50;
        while (--i && uniform!T() == init) {}
        assert(i > 0);
    }
}

/**
Generates a uniform probability distribution of size $(D n), i.e., an
array of size $(D n) of positive numbers of type $(D F) that sum to
$(D 1). If $(D useThis) is provided, it is used as storage.
 */
F[] uniformDistribution(F = double)(size_t n, F[] useThis = null)
{
    useThis.length = n;
    foreach (ref e; useThis)
    {
        e = uniform(0.0, 1);
    }
    normalize(useThis);
    return useThis;
}

unittest
{
    static assert(is(CommonType!(double, int) == double));
    auto a = uniformDistribution(5);
    enforce(a.length == 5);
    enforce(approxEqual(reduce!"a + b"(a), 1));
    a = uniformDistribution(10, a);
    enforce(a.length == 10);
    enforce(approxEqual(reduce!"a + b"(a), 1));
}

/**
Shuffles elements of $(D r) using $(D r) as a shuffler. $(D r) must be
a random-access range with length.
 */

void randomShuffle(Range, RandomGen = Random)(Range r,
        ref RandomGen gen = rndGen)
{
    foreach (i; 0 .. r.length)
    {
        swapAt(r, i, i + uniform(0, r.length - i, gen));
    }
}

unittest
{
    auto a = ([ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]).dup;
    auto b = a.dup;
    Mt19937 gen;
    randomShuffle(a, gen);
    assert(a.sort == b.sort);
    randomShuffle(a);
    assert(a.sort == b.sort);
}

/**
Rolls a dice with relative probabilities stored in $(D
proportions). Returns the index in $(D proportions) that was chosen.

Example:

----
auto x = dice(0.5, 0.5);   // x is 0 or 1 in equal proportions
auto y = dice(50, 50);     // y is 0 or 1 in equal proportions
auto z = dice(70, 20, 10); // z is 0 70% of the time, 1 30% of the time,
                           // and 2 10% of the time
----
*/
size_t dice(Rng, Num)(ref Rng rnd, Num[] proportions...)
if (isNumeric!Num && isForwardRange!Rng)
{
    return diceImpl(rnd, proportions);
}

/// Ditto
size_t dice(R, Range)(ref R rnd, Range proportions)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range)
{
    return diceImpl(rnd, proportions);
}

/// Ditto
size_t dice(Range)(Range proportions)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && !isArray!Range)
{
    return diceImpl(rndGen(), proportions);
}

/// Ditto
size_t dice(Num)(Num[] proportions...)
if (isNumeric!Num)
{
    return diceImpl(rndGen(), proportions);
}

private size_t diceImpl(Rng, Range)(ref Rng rng, Range proportions)
if (isForwardRange!Range && isNumeric!(ElementType!Range) && isForwardRange!Rng)
{
    double sum = reduce!("(assert(b >= 0), a + b)")(0.0, proportions.save);
    enforce(sum > 0, "Proportions in a dice cannot sum to zero");
    immutable point = uniform(0.0, sum, rng);
    assert(point < sum);
    auto mass = 0.0;

    size_t i = 0;
    foreach (e; proportions) {
        mass += e;
        if (point < mass) return i;
        i++;
    }
    // this point should not be reached
    assert(false);
}

unittest {
    auto rnd = Random(unpredictableSeed);
    auto i = dice(rnd, 0.0, 100.0);
    assert(i == 1);
    i = dice(rnd, 100.0, 0.0);
    assert(i == 0);

    i = dice(100U, 0U);
    assert(i == 0);
}

/**
Covers a given range $(D r) in a random manner, i.e. goes through each
element of $(D r) once and only once, just in a random order. $(D r)
must be a random-access range with length.

Example:
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ];
auto rnd = Random(unpredictableSeed);
foreach (e; randomCover(a, rnd))
{
    writeln(e);
}
----
 */
struct RandomCover(Range, Random)
{
    private Range _input;
    private Random _rnd;
    private bool[] _chosen;
    private uint _current;
    private uint _alreadyChosen;

    this(Range input, Random rnd)
    {
        _input = input;
        _rnd = rnd;
        _chosen.length = _input.length;
        popFront;
    }

    static if (hasLength!Range)
        @property size_t length()
        {
            return (1 + _input.length) - _alreadyChosen;
        }

    @property auto ref front()
    {
        return _input[_current];
    }

    void popFront()
    {
        if (_alreadyChosen >= _input.length)
        {
            // No more elements
            ++_alreadyChosen; // means we're done
            return;
        }
        size_t k = _input.length - _alreadyChosen;
        uint i;
        foreach (e; _input)
        {
            if (_chosen[i]) { ++i; continue; }
            // Roll a dice with k faces
            auto chooseMe = uniform(0, k, _rnd) == 0;
            assert(k > 1 || chooseMe);
            if (chooseMe)
            {
                _chosen[i] = true;
                _current = i;
                ++_alreadyChosen;
                return;
            }
            --k;
            ++i;
        }
        assert(false);
    }

    @property typeof(this) save()
    {
        auto ret = this;
        ret._input = _input.save;
        ret._rnd = _rnd.save;
        return ret;
    }

    @property bool empty() { return _alreadyChosen > _input.length; }
}

/// Ditto
RandomCover!(Range, Random) randomCover(Range, Random)(Range r, Random rnd)
{
    return typeof(return)(r, rnd);
}

unittest
{
    int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8 ];
    auto rnd = Random(unpredictableSeed);
    RandomCover!(int[], Random) rc = randomCover(a, rnd);
    static assert(isForwardRange!(typeof(rc)));

    int[] b = new int[9];
    uint i;
    foreach (e; rc)
    {
        //writeln(e);
        b[i++] = e;
    }
    sort(b);
    assert(a == b, text(b));
}

// RandomSample
/**
Selects a random subsample out of $(D r), containing exactly $(D n)
elements. The order of elements is the same as in the original
range. The total length of $(D r) must be known. If $(D total) is
passed in, the total number of sample is considered to be $(D
total). Otherwise, $(D RandomSample) uses $(D r.length).

If the number of elements is not exactly $(D total), $(D
RandomSample) throws an exception. This is because $(D total) is
essential to computing the probability of selecting elements in the
range.

Example:
----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];
// Print 5 random elements picked off from r
foreach (e; randomSample(n, 5))
{
    writeln(e);
}
----
 */
struct RandomSample(R)
{
    private size_t _available, _toSelect;
    private R _input;
    private size_t _index;
    private enum bool byRef = is(typeof(&(R.init.front())));

/**
Constructor.
*/
    static if (hasLength!R)
        this(R input, size_t howMany)
        {
            this(input, howMany, input.length);
        }

/// Ditto
    this(R input, size_t howMany, size_t total)
    {
        _input = input;
        _available = total;
        _toSelect = howMany;
        enforce(_toSelect <= _available);
        // we should skip some elements initially so we don't always
        // start with the first
        prime;
    }

/**
   Range primitives.
*/
    @property bool empty() const
    {
        return _toSelect == 0;
    }

    mixin((byRef ? "ref " : "")~
            q{ElementType!R front()
                {
                    assert(!empty);
                    return _input.front;
                }});

/// Ditto
    void popFront()
    {
        _input.popFront;
        --_available;
        --_toSelect;
        ++_index;
        prime;
    }

/// Ditto
    @property typeof(this) save()
    {
        auto ret = this;
        ret._input = _input.save;
        return ret;
    }

/// Ditto
    @property size_t length()
    {
        return _toSelect;
    }

/**
Returns the index of the visited record.
 */
    size_t index()
    {
        return _index;
    }

    private void prime()
    {
        if (empty) return;
        assert(_available && _available >= _toSelect);
        for (;;)
        {
            auto r = uniform(0, _available);
            if (r < _toSelect)
            {
                // chosen!
                return;
            }
            // not chosen, retry
            assert(!_input.empty);
            _input.popFront;
            ++_index;
            --_available;
            assert(_available > 0);
        }
    }
}

/// Ditto
RandomSample!R randomSample(R)(R r, size_t n, size_t total)
{
    return typeof(return)(r, n, total);
}

/// Ditto
RandomSample!R randomSample(R)(R r, size_t n) //if (hasLength!R) // @@@BUG@@@
{
    return typeof(return)(r, n, r.length);
}

unittest
{
    int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];
    static assert(isForwardRange!(typeof(randomSample(a, 5))));

    //int[] a = [ 0, 1, 2 ];
    assert(randomSample(a, 5).length == 5);
    uint i;
    foreach (e; randomSample(randomCover(a, rndGen), 5))
    {
        ++i;
        //writeln(e);
    }
    assert(i == 5);
}