This file is indexed.

/usr/include/d2/4.6/std/functional.d is in libphobos2-4.6-dev 0.29.1-4.6.3-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
// Written in the D programming language.

/**
Functions that manipulate other functions.

Macros:

WIKI = Phobos/StdFunctional

Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
License:   $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors:   $(WEB erdani.org, Andrei Alexandrescu)
Source:    $(PHOBOSSRC std/_functional.d)
*/
/*
         Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
   (See accompanying file LICENSE_1_0.txt or copy at
         http://www.boost.org/LICENSE_1_0.txt)
*/
module std.functional;

import std.metastrings, std.stdio, std.traits, std.typecons, std.typetuple;
// for making various functions visible in *naryFun
import std.algorithm, std.conv, std.exception, std.math, std.range, std.string;

/**
Transforms a string representing an expression into a unary
function. The string must use symbol name $(D a) as the parameter.

Example:

----
alias unaryFun!("(a & 1) == 0") isEven;
assert(isEven(2) && !isEven(1));
----
*/

template unaryFun(alias funbody, bool byRef = false, string parmName = "a")
{
    alias unaryFunImpl!(funbody, byRef, parmName).result unaryFun;
}

template unaryFunImpl(alias fun, bool byRef, string parmName = "a")
{
    static if (is(typeof(fun) : string))
    {
        template Body(ElementType)
        {
            // enum testAsExpression = "{"~ElementType.stringof
            //     ~" "~parmName~"; return ("~fun~");}()";
            enum testAsExpression = "{ ElementType "~parmName
                ~"; return ("~fun~");}()";
            enum testAsStmts = "{"~ElementType.stringof
                ~" "~parmName~"; "~fun~"}()";
            // pragma(msg, "Expr: "~testAsExpression);
            // pragma(msg, "Stmts: "~testAsStmts);
            static if (__traits(compiles, mixin(testAsExpression)))
            {
                enum string code = "return (" ~ fun ~ ");";
                alias typeof(mixin(testAsExpression)) ReturnType;
            }
            // else static if (__traits(compiles, mixin(testAsStmts)))
            // {
            //     enum string code = fun;
            //     alias typeof(mixin(testAsStmts)) ReturnType;
            // }
            else
            {
                // Credit for this idea goes to Don Clugston
                // static assert is a bit broken,
                // better to do it this way to provide a backtrace.
                // pragma(msg, "Bad unary function: " ~ fun ~ " for type "
                //         ~ ElementType.stringof);
                static assert(false, "Bad unary function: " ~ fun ~
                        " for type " ~ ElementType.stringof);
            }
        }
        static if (byRef)
        {
            Body!(ElementType).ReturnType result(ElementType)(ref ElementType __a)
            {
                mixin("alias __a "~parmName~";");
                mixin(Body!(ElementType).code);
            }
        }
        else
        {
            Body!(ElementType).ReturnType result(ElementType)(ElementType __a)
            {
                mixin("alias __a "~parmName~";");
                mixin(Body!(ElementType).code);
            }
            // string mixme = "Body!(ElementType).ReturnType"
            //     " result(ElementType)(ElementType a)
            // { " ~ Body!(ElementType).code ~ " }";
            // mixin(mixme);
        }
    }
    else
    {
        alias fun result;
    }
}

unittest
{
    static int f1(int a) { return a + 1; }
    static assert(is(typeof(unaryFun!(f1)(1)) == int));
    assert(unaryFun!(f1)(41) == 42);
    int f2(int a) { return a + 1; }
    static assert(is(typeof(unaryFun!(f2)(1)) == int));
    assert(unaryFun!(f2)(41) == 42);
    assert(unaryFun!("a + 1")(41) == 42);
    //assert(unaryFun!("return a + 1;")(41) == 42);

    int num = 41;
    assert(unaryFun!("a + 1", true)(num) == 42);
}

/**
Transforms a string representing an expression into a Boolean binary
predicate. The string must use symbol names $(D a) and $(D b) as the
compared elements.

   Example:

----
alias binaryFun!("a < b") less;
assert(less(1, 2) && !less(2, 1));
alias binaryFun!("a > b") greater;
assert(!greater("1", "2") && greater("2", "1"));
----
*/

template binaryFun(alias funbody, string parm1Name = "a",
        string parm2Name = "b")
{
    alias binaryFunImpl!(funbody, parm1Name, parm2Name).result binaryFun;
}

template binaryFunImpl(alias fun,
        string parm1Name, string parm2Name)
{
    static if (is(typeof(fun) : string))
    {
        template Body(ElementType1, ElementType2)
        {
            enum testAsExpression = "{ ElementType1 "
                ~parm1Name~"; ElementType2 "
                ~parm2Name~"; return ("~fun~");}()";
            // enum testAsExpression = "{"~ElementType1.stringof
            //     ~" "~parm1Name~"; "~ElementType2.stringof
            //     ~" "~parm2Name~"; return ("~fun~");}()";
            // enum testAsStmts = "{"~ElementType1.stringof
            //     ~" "~parm1Name~"; "~ElementType2.stringof
            //     ~" "~parm2Name~"; "~fun~"}()";
            static if (__traits(compiles, mixin(testAsExpression)))
            {
                enum string code = "return (" ~ fun ~ ");";
                alias typeof(mixin(testAsExpression)) ReturnType;
            }
            // else static if (__traits(compiles, mixin(testAsStmts)))
            // {
            //     enum string code = fun;
            //     alias typeof(mixin(testAsStmts)) ReturnType;
            // }
            else
            {
                // Credit for this idea goes to Don Clugston
                enum string msg =
                    "Bad binary function q{" ~ fun ~ "}."
                    ~" You need to use a valid D expression using symbols "
                    ~parm1Name~" of type "~ElementType1.stringof~" and "
                    ~parm2Name~" of type "~ElementType2.stringof~"."
                    ~(fun.length && fun[$ - 1] == ';'
                            ? " The trailing semicolon is _not_ needed."
                            : "")
                    ~(fun.length && fun[$ - 1] == '}'
                            ? " The trailing bracket is mistaken."
                            : "");
                static assert(false, msg);
            }
        }
        Body!(ElementType1, ElementType2).ReturnType
            result(ElementType1, ElementType2)
            (ElementType1 __a, ElementType2 __b)
        {
            mixin("alias __a "~parm1Name~";");
            mixin("alias __b "~parm2Name~";");
            mixin(Body!(ElementType1, ElementType2).code);
        }
    }
    else
    {
        alias fun result;
    }
    // static if (is(typeof(comp) : string))
    // {
    //     // @@@BUG1816@@@: typeof(mixin(comp)) should work
    //     typeof({
    //                 static ElementType1 a;
    //                 static ElementType2 b;
    //                 return mixin(comp);
    //             }())
    //         binaryFun(ElementType1, ElementType2)
    //         (ElementType1 a, ElementType2 b)
    //     {
    //         return mixin(comp);
    //     }
    // }
    // else
    // {
    //     alias comp binaryFun;
    // }
}

unittest
{
    alias binaryFun!(q{a < b}) less;
    assert(less(1, 2) && !less(2, 1));
    assert(less("1", "2") && !less("2", "1"));

    static int f1(int a, string b) { return a + 1; }
    static assert(is(typeof(binaryFun!(f1)(1, "2")) == int));
    assert(binaryFun!(f1)(41, "a") == 42);
    string f2(int a, string b) { return b ~ "2"; }
    static assert(is(typeof(binaryFun!(f2)(1, "1")) == string));
    assert(binaryFun!(f2)(1, "4") == "42");
    assert(binaryFun!("a + b")(41, 1) == 42);
    //@@BUG
    //assert(binaryFun!("return a + b;")(41, 1) == 42);
}

/*
   Predicate that returns $(D_PARAM a < b).
*/
//bool less(T)(T a, T b) { return a < b; }
//alias binaryFun!(q{a < b}) less;

/*
   Predicate that returns $(D_PARAM a > b).
*/
//alias binaryFun!(q{a > b}) greater;

/*
   Predicate that returns $(D_PARAM a == b).
*/
//alias binaryFun!(q{a == b}) equalTo;

/*
   Binary predicate that reverses the order of arguments, e.g., given
   $(D pred(a, b)), returns $(D pred(b, a)).
*/
template binaryReverseArgs(alias pred)
{
    typeof({ ElementType1 a; ElementType2 b; return pred(b, a);}())
    binaryReverseArgs(ElementType1, ElementType2)(ElementType1 a,
            ElementType2 b)
    {
        return pred(b, a);
    }
}

unittest
{
    alias binaryReverseArgs!(binaryFun!("a < b")) gt;
    assert(gt(2, 1) && !gt(1, 1));
    int x = 42;
    bool xyz(int a, int b) { return a * x < b / x; }
    auto foo = &xyz;
    foo(4, 5);
    alias binaryReverseArgs!(foo) zyx;
    assert(zyx(5, 4) == foo(4, 5));
}

/**
Negates predicate $(D pred).

Example:
----
string a = "   Hello, world!";
assert(find!(not!isWhite)(a) == "Hello, world!");
----
 */
template not(alias pred)
{
    auto not(T...)(T args)
    if (is(typeof(!unaryFun!pred(args))) || is(typeof(!binaryFun!pred(args))))
    {
        static if (T.length == 1)
            return !unaryFun!pred(args);
        else static if (T.length == 2)
            return !binaryFun!pred(args);
        else
            static assert(false, "not unimplemented for multiple arguments");
    }
}

/**
Curries $(D fun) by tying its first argument to a particular value.

Example:

----
int fun(int a, int b) { return a + b; }
alias curry!(fun, 5) fun5;
assert(fun5(6) == 11);
----

Note that in most cases you'd use an alias instead of a value
assignment. Using an alias allows you to curry template functions
without committing to a particular type of the function.
 */
template curry(alias fun, alias arg)
{
    static if (is(typeof(fun) == delegate) || is(typeof(fun) == function))
    {
        ReturnType!fun curry(ParameterTypeTuple!fun[1..$] args2)
        {
            return fun(arg, args2);
        }
    }
    else
    {
        auto curry(Ts...)(Ts args2)
        {
            static if (is(typeof(fun(arg, args2))))
            {
                return fun(arg, args2);
            }
            else
            {
                static string errormsg()
                {
                    string msg = "Cannot call '" ~ fun.stringof ~ "' with arguments " ~
                        "(" ~ arg.stringof;
                    foreach(T; Ts)
                        msg ~= ", " ~ T.stringof;
                    msg ~= ").";
                    return msg;
                }
                static assert(0, errormsg());
            }
        }
    }
}

// tests for currying callables
unittest
{
    static int f1(int a, int b) { return a + b; }
    assert(curry!(f1, 5)(6) == 11);

    int f2(int a, int b) { return a + b; }
    int x = 5;
    assert(curry!(f2, x)(6) == 11);
    x = 7;
    assert(curry!(f2, x)(6) == 13);
    static assert(curry!(f2, 5)(6) == 11);

    auto dg = &f2;
    auto f3 = &curry!(dg, x);
    assert(f3(6) == 13);

    static int funOneArg(int a) { return a; }
    assert(curry!(funOneArg, 1)() == 1);

    static int funThreeArgs(int a, int b, int c) { return a + b + c; }
    alias curry!(funThreeArgs, 1) funThreeArgs1;
    assert(funThreeArgs1(2, 3) == 6);
    static assert(!is(typeof(funThreeArgs1(2))));

    enum xe = 5;
    alias curry!(f2, xe) fe;
    static assert(fe(6) == 11);
}

// tests for currying templated/overloaded callables
unittest
{
    static auto add(A, B)(A x, B y)
    {
        return x + y;
    }

    alias curry!(add, 5) add5;
    assert(add5(6) == 11);
    static assert(!is(typeof(add5())));
    static assert(!is(typeof(add5(6, 7))));

    // taking address of templated curry needs explicit type
    auto dg = &add5!(int);
    assert(dg(6) == 11);

    int x = 5;
    alias curry!(add, x) addX;
    assert(addX(6) == 11);

    static struct Callable
    {
        static string opCall(string a, string b) { return a ~ b; }
        int opCall(int a, int b) { return a * b; }
        double opCall(double a, double b) { return a + b; }
    }
    Callable callable;
    assert(curry!(Callable, "5")("6") == "56");
    assert(curry!(callable, 5)(6) == 30);
    assert(curry!(callable, 7.0)(3.0) == 7.0 + 3.0);

    static struct TCallable
    {
        auto opCall(A, B)(A a, B b)
        {
            return a + b;
        }
    }
    TCallable tcallable;
    assert(curry!(tcallable, 5)(6) == 11);
    static assert(!is(typeof(curry!(tcallable, "5")(6))));

    static A funOneArg(A)(A a) { return a; }
    alias curry!(funOneArg, 1) funOneArg1;
    assert(funOneArg1() == 1);

    static auto funThreeArgs(A, B, C)(A a, B b, C c) { return a + b + c; }
    alias curry!(funThreeArgs, 1) funThreeArgs1;
    assert(funThreeArgs1(2, 3) == 6);
    static assert(!is(typeof(funThreeArgs1(1))));

    // @@ dmd BUG 6600 @@
    // breaks completely unrelated unittest for toDelegate
    // static assert(is(typeof(dg_pure_nothrow) == int delegate() pure nothrow));
    version (none)
    {
        auto dg2 = &funOneArg1!();
        assert(dg2() == 1);
    }
}

/**
Takes multiple functions and adjoins them together. The result is a
$(XREF typecons, Tuple) with one element per passed-in function. Upon
invocation, the returned tuple is the adjoined results of all
functions.

Example:

----
static bool f1(int a) { return a != 0; }
static int f2(int a) { return a / 2; }
auto x = adjoin!(f1, f2)(5);
assert(is(typeof(x) == Tuple!(bool, int)));
assert(x[0] == true && x[1] == 2);
----
*/
template adjoin(F...) if (F.length)
{
    auto adjoin(V...)(V a)
    {
        static if (F.length == 1)
        {
            return F[0](a);
        }
        else static if (F.length == 2)
        {
            return tuple(F[0](a), F[1](a));
        }
        else
        {
            alias typeof(F[0](a)) Head;
            Tuple!(Head, typeof(.adjoin!(F[1..$])(a)).Types) result = void;
            foreach (i, Unused; result.Types)
            {
                emplace(&result[i], F[i](a));
            }
            return result;
        }
    }
}

unittest
{
    static bool F1(int a) { return a != 0; }
    auto x1 = adjoin!(F1)(5);
    static int F2(int a) { return a / 2; }
    auto x2 = adjoin!(F1, F2)(5);
    assert(is(typeof(x2) == Tuple!(bool, int)));
    assert(x2[0] && x2[1] == 2);
    auto x3 = adjoin!(F1, F2, F2)(5);
    assert(is(typeof(x3) == Tuple!(bool, int, int)));
    assert(x3[0] && x3[1] == 2 && x3[2] == 2);

    bool F4(int a) { return a != x1; }
    alias adjoin!(F4) eff4;
    static struct S
    {
        bool delegate(int) store;
        int fun() { return 42 + store(5); }
    }
    S s;
    s.store = (int a) { return eff4(a); };
    auto x4 = s.fun();
    assert(x4 == 43);
}

// /*private*/ template NaryFun(string fun, string letter, V...)
// {
//     static if (V.length == 0)
//     {
//         enum args = "";
//     }
//     else
//     {
//         enum args = V[0].stringof~" "~letter~"; "
//             ~NaryFun!(fun, [letter[0] + 1], V[1..$]).args;
//         enum code = args ~ "return "~fun~";";
//     }
//     alias void Result;
// }

// unittest
// {
//     writeln(NaryFun!("a * b * 2", "a", int, double).code);
// }

// /**
// naryFun
//  */
// template naryFun(string fun)
// {
//     //NaryFun!(fun, "a", V).Result
//     int naryFun(V...)(V values)
//     {
//         enum string code = NaryFun!(fun, "a", V).code;
//         mixin(code);
//     }
// }

// unittest
// {
//     alias naryFun!("a + b") test;
//     test(1, 2);
// }

/**
   Composes passed-in functions $(D fun[0], fun[1], ...) returning a
   function $(D f(x)) that in turn returns $(D
   fun[0](fun[1](...(x)))...). Each function can be a regular
   functions, a delegate, or a string.

   Example:

----
// First split a string in whitespace-separated tokens and then
// convert each token into an integer
assert(compose!(map!(to!(int)), split)("1 2 3") == [1, 2, 3]);
----
*/

template compose(fun...) { alias composeImpl!(fun).doIt compose; }

// Implementation of compose
template composeImpl(fun...)
{
        static if (fun.length == 1)
        {
        static if (is(typeof(fun[0]) : string))
            alias unaryFun!(fun[0]) doIt;
        else
            alias fun[0] doIt;
        }
    else static if (fun.length == 2)
    {
        // starch
        static if (is(typeof(fun[0]) : string))
            alias unaryFun!(fun[0]) fun0;
        else
            alias fun[0] fun0;
        static if (is(typeof(fun[1]) : string))
            alias unaryFun!(fun[1]) fun1;
        else
            alias fun[1] fun1;
        // protein: the core composition operation
        typeof({ E a; return fun0(fun1(a)); }()) doIt(E)(E a)
        {
            return fun0(fun1(a));
        }
    }
    else
    {
        // protein: assembling operations
        alias composeImpl!(fun[0], composeImpl!(fun[1 .. $]).doIt).doIt doIt;
    }
}

/**
   Pipes functions in sequence. Offers the same functionality as $(D
   compose), but with functions specified in reverse order. This may
   lead to more readable code in some situation because the order of
   execution is the same as lexical order.

   Example:

----
// Read an entire text file, split the resulting string in
// whitespace-separated tokens, and then convert each token into an
// integer
int[] a = pipe!(readText, split, map!(to!(int)))("file.txt");
----
 */
template pipe(fun...)
{
    alias compose!(Reverse!(fun)) pipe;
}

unittest
{
    string foo(int a) { return to!(string)(a); }
    int bar(string a) { return to!(int)(a) + 1; }
    double baz(int a) { return a + 0.5; }
    assert(compose!(baz, bar, foo)(1) == 2.5);
    assert(pipe!(foo, bar, baz)(1) == 2.5);

    assert(compose!(baz, `to!(int)(a) + 1`, foo)(1) == 2.5);
    assert(compose!(baz, bar)("1"[]) == 2.5);

    assert(compose!(baz, bar)("1") == 2.5);

    // @@@BUG@@@
    //assert(compose!(`a + 0.5`, `to!(int)(a) + 1`, foo)(1) == 2.5);
}

/**
 * $(LUCKY Memoizes) a function so as to avoid repeated
 * computation. The memoization structure is a hash table keyed by a
 * tuple of the function's arguments. There is a speed gain if the
 * function is repeatedly called with the same arguments and is more
 * expensive than a hash table lookup. For more information on memoization, refer to $(WEB docs.google.com/viewer?url=http%3A%2F%2Fhop.perl.plover.com%2Fbook%2Fpdf%2F03CachingAndMemoization.pdf, this book chapter).

Example:
----
double transmogrify(int a, string b)
{
   ... expensive computation ...
}
alias memoize!transmogrify fastTransmogrify;
unittest
{
    auto slow = transmogrify(2, "hello");
    auto fast = fastTransmogrify(2, "hello");
    assert(slow == fast);
}
----

Technically the memoized function should be pure because $(D memoize) assumes it will
always return the same result for a given tuple of arguments. However, $(D memoize) does not
enforce that because sometimes it
is useful to memoize an impure function, too.

To _memoize a recursive function, simply insert the memoized call in lieu of the plain recursive call.
For example, to transform the exponential-time Fibonacci implementation into a linear-time computation:

Example:
----
ulong fib(ulong n)
{
    alias memoize!fib mfib;
    return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1);
}
...
assert(fib(10) == 89);
----

To improve the speed of the factorial function,

Example:
----
ulong fact(ulong n)
{
    alias memoize!fact mfact;
    return n < 2 ? 1 : n * mfact(n - 1);
}
...
assert(fact(10) == 3628800);
----

This memoizes all values of $(D fact) up to the largest argument. To only cache the final
result, move $(D memoize) outside the function as shown below.

Example:
----
ulong factImpl(ulong n)
{
    return n < 2 ? 1 : n * mfact(n - 1);
}
alias memoize!factImpl fact;
...
assert(fact(10) == 3628800);
----

The $(D maxSize) parameter is a cutoff for the cache size. If upon a miss the length of the hash
table is found to be $(D maxSize), the table is simply cleared.

Example:
----
// Memoize no more than 128 values of transmogrify
alias memoize!(transmogrify, 128) fastTransmogrify;
----
*/
template memoize(alias fun, uint maxSize = uint.max)
{
    ReturnType!fun memoize(ParameterTypeTuple!fun args)
    {
        static ReturnType!fun[Tuple!(typeof(args))] memo;
        auto t = tuple(args);
        auto p = t in memo;
        if (p) return *p;
        static if (maxSize != uint.max)
        {
            if (memo.length >= maxSize) memo = null;
        }
        auto r = fun(args);
        //writeln("Inserting result ", typeof(r).stringof, "(", r, ") for parameters ", t);
        memo[t] = r;
        return r;
    }
}

unittest
{
    alias memoize!(function double(double x) { return sqrt(x); }) msqrt;
    auto y = msqrt(2.0);
    assert(y == msqrt(2.0));
    y = msqrt(4.0);
    assert(y == sqrt(4.0));

    // alias memoize!rgb2cmyk mrgb2cmyk;
    // auto z = mrgb2cmyk([43, 56, 76]);
    // assert(z == mrgb2cmyk([43, 56, 76]));

    //alias memoize!fib mfib;

    static ulong fib(ulong n)
    {
        alias memoize!fib mfib;
        return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1);
    }

    auto z = fib(10);
    assert(z == 89);

    static ulong fact(ulong n)
    {
        alias memoize!fact mfact;
        return n < 2 ? 1 : n * mfact(n - 1);
    }
    assert(fact(10) == 3628800);
}

private struct DelegateFaker(F) {
    /*
     * What all the stuff below does is this:
     *--------------------
     * struct DelegateFaker(F) {
     *     extern(linkage)
     *     [ref] ReturnType!F doIt(ParameterTypeTuple!F args) [@attributes]
     *     {
     *         auto fp = cast(F) &this;
     *         return fp(args);
     *     }
     * }
     *--------------------
     */

    // We will use MemberFunctionGenerator in std.typecons.  This is a policy
    // configuration for generating the doIt().
    template GeneratingPolicy()
    {
        // Inform the genereator that we only have type information.
        enum WITHOUT_SYMBOL = true;

        // Generate the function body of doIt().
        template generateFunctionBody(unused...)
        {
            enum generateFunctionBody =
            // [ref] ReturnType doIt(ParameterTypeTuple args) @attributes
            q{
                // When this function gets called, the this pointer isn't
                // really a this pointer (no instance even really exists), but
                // a function pointer that points to the function to be called.
                // Cast it to the correct type and call it.

                auto fp = cast(F) &this; // XXX doesn't work with @safe
                return fp(args);
            };
        }
    }
    // Type information used by the generated code.
    alias FuncInfo!(F) FuncInfo_doIt;

    // Generate the member function doIt().
    mixin( std.typecons.MemberFunctionGenerator!(GeneratingPolicy!())
            .generateFunction!("FuncInfo_doIt", "doIt", F) );
}

/**
 * Convert a callable to a delegate with the same parameter list and
 * return type, avoiding heap allocations and use of auxiliary storage.
 *
 * Examples:
 * ----
 * void doStuff() {
 *     writeln("Hello, world.");
 * }
 *
 * void runDelegate(void delegate() myDelegate) {
 *     myDelegate();
 * }
 *
 * auto delegateToPass = toDelegate(&doStuff);
 * runDelegate(delegateToPass);  // Calls doStuff, prints "Hello, world."
 * ----
 *
 * BUGS:
 * $(UL
 *   $(LI Does not work with $(D @safe) functions.)
 *   $(LI Ignores C-style / D-style variadic arguments.)
 * )
 */
auto toDelegate(F)(auto ref F fp) if (isCallable!(F))
{
    static if (is(F == delegate))
    {
        return fp;
    }
    else static if (is(typeof(&F.opCall) == delegate)
                || (is(typeof(&F.opCall) V : V*) && is(V == function)))
    {
        return toDelegate(&fp.opCall);
    }
    else
    {
        alias typeof(&(new DelegateFaker!(F)).doIt) DelType;

        static struct DelegateFields {
            union {
                DelType del;
                //pragma(msg, typeof(del));

                struct {
                    void* contextPtr;
                    void* funcPtr;
                }
            }
        }

        // fp is stored in the returned delegate's context pointer.
        // The returned delegate's function pointer points to
        // DelegateFaker.doIt.
        DelegateFields df;

        df.contextPtr = cast(void*) fp;

        DelegateFaker!(F) dummy;
        auto dummyDel = &(dummy.doIt);
        df.funcPtr = dummyDel.funcptr;

        return df.del;
    }
}

unittest {
    static int inc(ref uint num) {
        num++;
        return 8675309;
    }

    uint myNum = 0;
    auto incMyNumDel = toDelegate(&inc);
    static assert(is(typeof(incMyNumDel) == int delegate(ref uint)));
    auto returnVal = incMyNumDel(myNum);
    assert(myNum == 1);

    interface I { int opCall(); }
    class C: I { int opCall() { inc(myNum); return myNum;} }
    auto c = new C;
    auto i = cast(I) c;

    auto getvalc = toDelegate(c);
    assert(getvalc() == 2);

    auto getvali = toDelegate(i);
    assert(getvali() == 3);

    struct S1 { int opCall() { inc(myNum); return myNum; } }
    static assert(!is(typeof(&s1.opCall) == delegate));
    S1 s1;
    auto getvals1 = toDelegate(s1);
    assert(getvals1() == 4);

    struct S2 { static int opCall() { return 123456; } }
    static assert(!is(typeof(&S2.opCall) == delegate));
    S2 s2;
    auto getvals2 =&S2.opCall;
    assert(getvals2() == 123456);

    /* test for attributes */
    {
        static int refvar = 0xDeadFace;

        static ref int func_ref() { return refvar; }
        static int func_pure() pure { return 1; }
        static int func_nothrow() nothrow { return 2; }
        static int func_property() @property { return 3; }
        static int func_safe() @safe { return 4; }
        static int func_trusted() @trusted { return 5; }
        static int func_system() @system { return 6; }
        static int func_pure_nothrow() pure nothrow { return 7; }
        static int func_pure_nothrow_safe() pure @safe { return 8; }

        auto dg_ref = toDelegate(&func_ref);
        auto dg_pure = toDelegate(&func_pure);
        auto dg_nothrow = toDelegate(&func_nothrow);
        auto dg_property = toDelegate(&func_property);
        //auto dg_safe = toDelegate(&func_safe);
        auto dg_trusted = toDelegate(&func_trusted);
        auto dg_system = toDelegate(&func_system);
        auto dg_pure_nothrow = toDelegate(&func_pure_nothrow);
        //auto dg_pure_nothrow_safe = toDelegate(&func_pure_nothrow_safe);

        //static assert(is(typeof(dg_ref) == ref int delegate())); // [BUG@DMD]
        static assert(is(typeof(dg_pure) == int delegate() pure));
        static assert(is(typeof(dg_nothrow) == int delegate() nothrow));
        static assert(is(typeof(dg_property) == int delegate() @property));
        //static assert(is(typeof(dg_safe) == int delegate() @safe));
        static assert(is(typeof(dg_trusted) == int delegate() @trusted));
        static assert(is(typeof(dg_system) == int delegate() @system));
        static assert(is(typeof(dg_pure_nothrow) == int delegate() pure nothrow));
        //static assert(is(typeof(dg_pure_nothrow_safe) == int delegate() pure nothrow @safe));

        assert(dg_ref() == refvar);
        assert(dg_pure() == 1);
        assert(dg_nothrow() == 2);
        assert(dg_property() == 3);
        //assert(dg_safe() == 4);
        assert(dg_trusted() == 5);
        assert(dg_system() == 6);
        assert(dg_pure_nothrow() == 7);
        //assert(dg_pure_nothrow_safe() == 8);
    }
    /* test for linkage */
    {
        struct S
        {
            extern(C) static void xtrnC() {}
            extern(D) static void xtrnD() {}
        }
        auto dg_xtrnC = toDelegate(&S.xtrnC);
        auto dg_xtrnD = toDelegate(&S.xtrnD);
        static assert(! is(typeof(dg_xtrnC) == typeof(dg_xtrnD)));
    }
}