/usr/include/d2/4.6/std/functional.d is in libphobos2-4.6-dev 0.29.1-4.6.3-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 | // Written in the D programming language.
/**
Functions that manipulate other functions.
Macros:
WIKI = Phobos/StdFunctional
Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB erdani.org, Andrei Alexandrescu)
Source: $(PHOBOSSRC std/_functional.d)
*/
/*
Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
*/
module std.functional;
import std.metastrings, std.stdio, std.traits, std.typecons, std.typetuple;
// for making various functions visible in *naryFun
import std.algorithm, std.conv, std.exception, std.math, std.range, std.string;
/**
Transforms a string representing an expression into a unary
function. The string must use symbol name $(D a) as the parameter.
Example:
----
alias unaryFun!("(a & 1) == 0") isEven;
assert(isEven(2) && !isEven(1));
----
*/
template unaryFun(alias funbody, bool byRef = false, string parmName = "a")
{
alias unaryFunImpl!(funbody, byRef, parmName).result unaryFun;
}
template unaryFunImpl(alias fun, bool byRef, string parmName = "a")
{
static if (is(typeof(fun) : string))
{
template Body(ElementType)
{
// enum testAsExpression = "{"~ElementType.stringof
// ~" "~parmName~"; return ("~fun~");}()";
enum testAsExpression = "{ ElementType "~parmName
~"; return ("~fun~");}()";
enum testAsStmts = "{"~ElementType.stringof
~" "~parmName~"; "~fun~"}()";
// pragma(msg, "Expr: "~testAsExpression);
// pragma(msg, "Stmts: "~testAsStmts);
static if (__traits(compiles, mixin(testAsExpression)))
{
enum string code = "return (" ~ fun ~ ");";
alias typeof(mixin(testAsExpression)) ReturnType;
}
// else static if (__traits(compiles, mixin(testAsStmts)))
// {
// enum string code = fun;
// alias typeof(mixin(testAsStmts)) ReturnType;
// }
else
{
// Credit for this idea goes to Don Clugston
// static assert is a bit broken,
// better to do it this way to provide a backtrace.
// pragma(msg, "Bad unary function: " ~ fun ~ " for type "
// ~ ElementType.stringof);
static assert(false, "Bad unary function: " ~ fun ~
" for type " ~ ElementType.stringof);
}
}
static if (byRef)
{
Body!(ElementType).ReturnType result(ElementType)(ref ElementType __a)
{
mixin("alias __a "~parmName~";");
mixin(Body!(ElementType).code);
}
}
else
{
Body!(ElementType).ReturnType result(ElementType)(ElementType __a)
{
mixin("alias __a "~parmName~";");
mixin(Body!(ElementType).code);
}
// string mixme = "Body!(ElementType).ReturnType"
// " result(ElementType)(ElementType a)
// { " ~ Body!(ElementType).code ~ " }";
// mixin(mixme);
}
}
else
{
alias fun result;
}
}
unittest
{
static int f1(int a) { return a + 1; }
static assert(is(typeof(unaryFun!(f1)(1)) == int));
assert(unaryFun!(f1)(41) == 42);
int f2(int a) { return a + 1; }
static assert(is(typeof(unaryFun!(f2)(1)) == int));
assert(unaryFun!(f2)(41) == 42);
assert(unaryFun!("a + 1")(41) == 42);
//assert(unaryFun!("return a + 1;")(41) == 42);
int num = 41;
assert(unaryFun!("a + 1", true)(num) == 42);
}
/**
Transforms a string representing an expression into a Boolean binary
predicate. The string must use symbol names $(D a) and $(D b) as the
compared elements.
Example:
----
alias binaryFun!("a < b") less;
assert(less(1, 2) && !less(2, 1));
alias binaryFun!("a > b") greater;
assert(!greater("1", "2") && greater("2", "1"));
----
*/
template binaryFun(alias funbody, string parm1Name = "a",
string parm2Name = "b")
{
alias binaryFunImpl!(funbody, parm1Name, parm2Name).result binaryFun;
}
template binaryFunImpl(alias fun,
string parm1Name, string parm2Name)
{
static if (is(typeof(fun) : string))
{
template Body(ElementType1, ElementType2)
{
enum testAsExpression = "{ ElementType1 "
~parm1Name~"; ElementType2 "
~parm2Name~"; return ("~fun~");}()";
// enum testAsExpression = "{"~ElementType1.stringof
// ~" "~parm1Name~"; "~ElementType2.stringof
// ~" "~parm2Name~"; return ("~fun~");}()";
// enum testAsStmts = "{"~ElementType1.stringof
// ~" "~parm1Name~"; "~ElementType2.stringof
// ~" "~parm2Name~"; "~fun~"}()";
static if (__traits(compiles, mixin(testAsExpression)))
{
enum string code = "return (" ~ fun ~ ");";
alias typeof(mixin(testAsExpression)) ReturnType;
}
// else static if (__traits(compiles, mixin(testAsStmts)))
// {
// enum string code = fun;
// alias typeof(mixin(testAsStmts)) ReturnType;
// }
else
{
// Credit for this idea goes to Don Clugston
enum string msg =
"Bad binary function q{" ~ fun ~ "}."
~" You need to use a valid D expression using symbols "
~parm1Name~" of type "~ElementType1.stringof~" and "
~parm2Name~" of type "~ElementType2.stringof~"."
~(fun.length && fun[$ - 1] == ';'
? " The trailing semicolon is _not_ needed."
: "")
~(fun.length && fun[$ - 1] == '}'
? " The trailing bracket is mistaken."
: "");
static assert(false, msg);
}
}
Body!(ElementType1, ElementType2).ReturnType
result(ElementType1, ElementType2)
(ElementType1 __a, ElementType2 __b)
{
mixin("alias __a "~parm1Name~";");
mixin("alias __b "~parm2Name~";");
mixin(Body!(ElementType1, ElementType2).code);
}
}
else
{
alias fun result;
}
// static if (is(typeof(comp) : string))
// {
// // @@@BUG1816@@@: typeof(mixin(comp)) should work
// typeof({
// static ElementType1 a;
// static ElementType2 b;
// return mixin(comp);
// }())
// binaryFun(ElementType1, ElementType2)
// (ElementType1 a, ElementType2 b)
// {
// return mixin(comp);
// }
// }
// else
// {
// alias comp binaryFun;
// }
}
unittest
{
alias binaryFun!(q{a < b}) less;
assert(less(1, 2) && !less(2, 1));
assert(less("1", "2") && !less("2", "1"));
static int f1(int a, string b) { return a + 1; }
static assert(is(typeof(binaryFun!(f1)(1, "2")) == int));
assert(binaryFun!(f1)(41, "a") == 42);
string f2(int a, string b) { return b ~ "2"; }
static assert(is(typeof(binaryFun!(f2)(1, "1")) == string));
assert(binaryFun!(f2)(1, "4") == "42");
assert(binaryFun!("a + b")(41, 1) == 42);
//@@BUG
//assert(binaryFun!("return a + b;")(41, 1) == 42);
}
/*
Predicate that returns $(D_PARAM a < b).
*/
//bool less(T)(T a, T b) { return a < b; }
//alias binaryFun!(q{a < b}) less;
/*
Predicate that returns $(D_PARAM a > b).
*/
//alias binaryFun!(q{a > b}) greater;
/*
Predicate that returns $(D_PARAM a == b).
*/
//alias binaryFun!(q{a == b}) equalTo;
/*
Binary predicate that reverses the order of arguments, e.g., given
$(D pred(a, b)), returns $(D pred(b, a)).
*/
template binaryReverseArgs(alias pred)
{
typeof({ ElementType1 a; ElementType2 b; return pred(b, a);}())
binaryReverseArgs(ElementType1, ElementType2)(ElementType1 a,
ElementType2 b)
{
return pred(b, a);
}
}
unittest
{
alias binaryReverseArgs!(binaryFun!("a < b")) gt;
assert(gt(2, 1) && !gt(1, 1));
int x = 42;
bool xyz(int a, int b) { return a * x < b / x; }
auto foo = &xyz;
foo(4, 5);
alias binaryReverseArgs!(foo) zyx;
assert(zyx(5, 4) == foo(4, 5));
}
/**
Negates predicate $(D pred).
Example:
----
string a = " Hello, world!";
assert(find!(not!isWhite)(a) == "Hello, world!");
----
*/
template not(alias pred)
{
auto not(T...)(T args)
if (is(typeof(!unaryFun!pred(args))) || is(typeof(!binaryFun!pred(args))))
{
static if (T.length == 1)
return !unaryFun!pred(args);
else static if (T.length == 2)
return !binaryFun!pred(args);
else
static assert(false, "not unimplemented for multiple arguments");
}
}
/**
Curries $(D fun) by tying its first argument to a particular value.
Example:
----
int fun(int a, int b) { return a + b; }
alias curry!(fun, 5) fun5;
assert(fun5(6) == 11);
----
Note that in most cases you'd use an alias instead of a value
assignment. Using an alias allows you to curry template functions
without committing to a particular type of the function.
*/
template curry(alias fun, alias arg)
{
static if (is(typeof(fun) == delegate) || is(typeof(fun) == function))
{
ReturnType!fun curry(ParameterTypeTuple!fun[1..$] args2)
{
return fun(arg, args2);
}
}
else
{
auto curry(Ts...)(Ts args2)
{
static if (is(typeof(fun(arg, args2))))
{
return fun(arg, args2);
}
else
{
static string errormsg()
{
string msg = "Cannot call '" ~ fun.stringof ~ "' with arguments " ~
"(" ~ arg.stringof;
foreach(T; Ts)
msg ~= ", " ~ T.stringof;
msg ~= ").";
return msg;
}
static assert(0, errormsg());
}
}
}
}
// tests for currying callables
unittest
{
static int f1(int a, int b) { return a + b; }
assert(curry!(f1, 5)(6) == 11);
int f2(int a, int b) { return a + b; }
int x = 5;
assert(curry!(f2, x)(6) == 11);
x = 7;
assert(curry!(f2, x)(6) == 13);
static assert(curry!(f2, 5)(6) == 11);
auto dg = &f2;
auto f3 = &curry!(dg, x);
assert(f3(6) == 13);
static int funOneArg(int a) { return a; }
assert(curry!(funOneArg, 1)() == 1);
static int funThreeArgs(int a, int b, int c) { return a + b + c; }
alias curry!(funThreeArgs, 1) funThreeArgs1;
assert(funThreeArgs1(2, 3) == 6);
static assert(!is(typeof(funThreeArgs1(2))));
enum xe = 5;
alias curry!(f2, xe) fe;
static assert(fe(6) == 11);
}
// tests for currying templated/overloaded callables
unittest
{
static auto add(A, B)(A x, B y)
{
return x + y;
}
alias curry!(add, 5) add5;
assert(add5(6) == 11);
static assert(!is(typeof(add5())));
static assert(!is(typeof(add5(6, 7))));
// taking address of templated curry needs explicit type
auto dg = &add5!(int);
assert(dg(6) == 11);
int x = 5;
alias curry!(add, x) addX;
assert(addX(6) == 11);
static struct Callable
{
static string opCall(string a, string b) { return a ~ b; }
int opCall(int a, int b) { return a * b; }
double opCall(double a, double b) { return a + b; }
}
Callable callable;
assert(curry!(Callable, "5")("6") == "56");
assert(curry!(callable, 5)(6) == 30);
assert(curry!(callable, 7.0)(3.0) == 7.0 + 3.0);
static struct TCallable
{
auto opCall(A, B)(A a, B b)
{
return a + b;
}
}
TCallable tcallable;
assert(curry!(tcallable, 5)(6) == 11);
static assert(!is(typeof(curry!(tcallable, "5")(6))));
static A funOneArg(A)(A a) { return a; }
alias curry!(funOneArg, 1) funOneArg1;
assert(funOneArg1() == 1);
static auto funThreeArgs(A, B, C)(A a, B b, C c) { return a + b + c; }
alias curry!(funThreeArgs, 1) funThreeArgs1;
assert(funThreeArgs1(2, 3) == 6);
static assert(!is(typeof(funThreeArgs1(1))));
// @@ dmd BUG 6600 @@
// breaks completely unrelated unittest for toDelegate
// static assert(is(typeof(dg_pure_nothrow) == int delegate() pure nothrow));
version (none)
{
auto dg2 = &funOneArg1!();
assert(dg2() == 1);
}
}
/**
Takes multiple functions and adjoins them together. The result is a
$(XREF typecons, Tuple) with one element per passed-in function. Upon
invocation, the returned tuple is the adjoined results of all
functions.
Example:
----
static bool f1(int a) { return a != 0; }
static int f2(int a) { return a / 2; }
auto x = adjoin!(f1, f2)(5);
assert(is(typeof(x) == Tuple!(bool, int)));
assert(x[0] == true && x[1] == 2);
----
*/
template adjoin(F...) if (F.length)
{
auto adjoin(V...)(V a)
{
static if (F.length == 1)
{
return F[0](a);
}
else static if (F.length == 2)
{
return tuple(F[0](a), F[1](a));
}
else
{
alias typeof(F[0](a)) Head;
Tuple!(Head, typeof(.adjoin!(F[1..$])(a)).Types) result = void;
foreach (i, Unused; result.Types)
{
emplace(&result[i], F[i](a));
}
return result;
}
}
}
unittest
{
static bool F1(int a) { return a != 0; }
auto x1 = adjoin!(F1)(5);
static int F2(int a) { return a / 2; }
auto x2 = adjoin!(F1, F2)(5);
assert(is(typeof(x2) == Tuple!(bool, int)));
assert(x2[0] && x2[1] == 2);
auto x3 = adjoin!(F1, F2, F2)(5);
assert(is(typeof(x3) == Tuple!(bool, int, int)));
assert(x3[0] && x3[1] == 2 && x3[2] == 2);
bool F4(int a) { return a != x1; }
alias adjoin!(F4) eff4;
static struct S
{
bool delegate(int) store;
int fun() { return 42 + store(5); }
}
S s;
s.store = (int a) { return eff4(a); };
auto x4 = s.fun();
assert(x4 == 43);
}
// /*private*/ template NaryFun(string fun, string letter, V...)
// {
// static if (V.length == 0)
// {
// enum args = "";
// }
// else
// {
// enum args = V[0].stringof~" "~letter~"; "
// ~NaryFun!(fun, [letter[0] + 1], V[1..$]).args;
// enum code = args ~ "return "~fun~";";
// }
// alias void Result;
// }
// unittest
// {
// writeln(NaryFun!("a * b * 2", "a", int, double).code);
// }
// /**
// naryFun
// */
// template naryFun(string fun)
// {
// //NaryFun!(fun, "a", V).Result
// int naryFun(V...)(V values)
// {
// enum string code = NaryFun!(fun, "a", V).code;
// mixin(code);
// }
// }
// unittest
// {
// alias naryFun!("a + b") test;
// test(1, 2);
// }
/**
Composes passed-in functions $(D fun[0], fun[1], ...) returning a
function $(D f(x)) that in turn returns $(D
fun[0](fun[1](...(x)))...). Each function can be a regular
functions, a delegate, or a string.
Example:
----
// First split a string in whitespace-separated tokens and then
// convert each token into an integer
assert(compose!(map!(to!(int)), split)("1 2 3") == [1, 2, 3]);
----
*/
template compose(fun...) { alias composeImpl!(fun).doIt compose; }
// Implementation of compose
template composeImpl(fun...)
{
static if (fun.length == 1)
{
static if (is(typeof(fun[0]) : string))
alias unaryFun!(fun[0]) doIt;
else
alias fun[0] doIt;
}
else static if (fun.length == 2)
{
// starch
static if (is(typeof(fun[0]) : string))
alias unaryFun!(fun[0]) fun0;
else
alias fun[0] fun0;
static if (is(typeof(fun[1]) : string))
alias unaryFun!(fun[1]) fun1;
else
alias fun[1] fun1;
// protein: the core composition operation
typeof({ E a; return fun0(fun1(a)); }()) doIt(E)(E a)
{
return fun0(fun1(a));
}
}
else
{
// protein: assembling operations
alias composeImpl!(fun[0], composeImpl!(fun[1 .. $]).doIt).doIt doIt;
}
}
/**
Pipes functions in sequence. Offers the same functionality as $(D
compose), but with functions specified in reverse order. This may
lead to more readable code in some situation because the order of
execution is the same as lexical order.
Example:
----
// Read an entire text file, split the resulting string in
// whitespace-separated tokens, and then convert each token into an
// integer
int[] a = pipe!(readText, split, map!(to!(int)))("file.txt");
----
*/
template pipe(fun...)
{
alias compose!(Reverse!(fun)) pipe;
}
unittest
{
string foo(int a) { return to!(string)(a); }
int bar(string a) { return to!(int)(a) + 1; }
double baz(int a) { return a + 0.5; }
assert(compose!(baz, bar, foo)(1) == 2.5);
assert(pipe!(foo, bar, baz)(1) == 2.5);
assert(compose!(baz, `to!(int)(a) + 1`, foo)(1) == 2.5);
assert(compose!(baz, bar)("1"[]) == 2.5);
assert(compose!(baz, bar)("1") == 2.5);
// @@@BUG@@@
//assert(compose!(`a + 0.5`, `to!(int)(a) + 1`, foo)(1) == 2.5);
}
/**
* $(LUCKY Memoizes) a function so as to avoid repeated
* computation. The memoization structure is a hash table keyed by a
* tuple of the function's arguments. There is a speed gain if the
* function is repeatedly called with the same arguments and is more
* expensive than a hash table lookup. For more information on memoization, refer to $(WEB docs.google.com/viewer?url=http%3A%2F%2Fhop.perl.plover.com%2Fbook%2Fpdf%2F03CachingAndMemoization.pdf, this book chapter).
Example:
----
double transmogrify(int a, string b)
{
... expensive computation ...
}
alias memoize!transmogrify fastTransmogrify;
unittest
{
auto slow = transmogrify(2, "hello");
auto fast = fastTransmogrify(2, "hello");
assert(slow == fast);
}
----
Technically the memoized function should be pure because $(D memoize) assumes it will
always return the same result for a given tuple of arguments. However, $(D memoize) does not
enforce that because sometimes it
is useful to memoize an impure function, too.
To _memoize a recursive function, simply insert the memoized call in lieu of the plain recursive call.
For example, to transform the exponential-time Fibonacci implementation into a linear-time computation:
Example:
----
ulong fib(ulong n)
{
alias memoize!fib mfib;
return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1);
}
...
assert(fib(10) == 89);
----
To improve the speed of the factorial function,
Example:
----
ulong fact(ulong n)
{
alias memoize!fact mfact;
return n < 2 ? 1 : n * mfact(n - 1);
}
...
assert(fact(10) == 3628800);
----
This memoizes all values of $(D fact) up to the largest argument. To only cache the final
result, move $(D memoize) outside the function as shown below.
Example:
----
ulong factImpl(ulong n)
{
return n < 2 ? 1 : n * mfact(n - 1);
}
alias memoize!factImpl fact;
...
assert(fact(10) == 3628800);
----
The $(D maxSize) parameter is a cutoff for the cache size. If upon a miss the length of the hash
table is found to be $(D maxSize), the table is simply cleared.
Example:
----
// Memoize no more than 128 values of transmogrify
alias memoize!(transmogrify, 128) fastTransmogrify;
----
*/
template memoize(alias fun, uint maxSize = uint.max)
{
ReturnType!fun memoize(ParameterTypeTuple!fun args)
{
static ReturnType!fun[Tuple!(typeof(args))] memo;
auto t = tuple(args);
auto p = t in memo;
if (p) return *p;
static if (maxSize != uint.max)
{
if (memo.length >= maxSize) memo = null;
}
auto r = fun(args);
//writeln("Inserting result ", typeof(r).stringof, "(", r, ") for parameters ", t);
memo[t] = r;
return r;
}
}
unittest
{
alias memoize!(function double(double x) { return sqrt(x); }) msqrt;
auto y = msqrt(2.0);
assert(y == msqrt(2.0));
y = msqrt(4.0);
assert(y == sqrt(4.0));
// alias memoize!rgb2cmyk mrgb2cmyk;
// auto z = mrgb2cmyk([43, 56, 76]);
// assert(z == mrgb2cmyk([43, 56, 76]));
//alias memoize!fib mfib;
static ulong fib(ulong n)
{
alias memoize!fib mfib;
return n < 2 ? 1 : mfib(n - 2) + mfib(n - 1);
}
auto z = fib(10);
assert(z == 89);
static ulong fact(ulong n)
{
alias memoize!fact mfact;
return n < 2 ? 1 : n * mfact(n - 1);
}
assert(fact(10) == 3628800);
}
private struct DelegateFaker(F) {
/*
* What all the stuff below does is this:
*--------------------
* struct DelegateFaker(F) {
* extern(linkage)
* [ref] ReturnType!F doIt(ParameterTypeTuple!F args) [@attributes]
* {
* auto fp = cast(F) &this;
* return fp(args);
* }
* }
*--------------------
*/
// We will use MemberFunctionGenerator in std.typecons. This is a policy
// configuration for generating the doIt().
template GeneratingPolicy()
{
// Inform the genereator that we only have type information.
enum WITHOUT_SYMBOL = true;
// Generate the function body of doIt().
template generateFunctionBody(unused...)
{
enum generateFunctionBody =
// [ref] ReturnType doIt(ParameterTypeTuple args) @attributes
q{
// When this function gets called, the this pointer isn't
// really a this pointer (no instance even really exists), but
// a function pointer that points to the function to be called.
// Cast it to the correct type and call it.
auto fp = cast(F) &this; // XXX doesn't work with @safe
return fp(args);
};
}
}
// Type information used by the generated code.
alias FuncInfo!(F) FuncInfo_doIt;
// Generate the member function doIt().
mixin( std.typecons.MemberFunctionGenerator!(GeneratingPolicy!())
.generateFunction!("FuncInfo_doIt", "doIt", F) );
}
/**
* Convert a callable to a delegate with the same parameter list and
* return type, avoiding heap allocations and use of auxiliary storage.
*
* Examples:
* ----
* void doStuff() {
* writeln("Hello, world.");
* }
*
* void runDelegate(void delegate() myDelegate) {
* myDelegate();
* }
*
* auto delegateToPass = toDelegate(&doStuff);
* runDelegate(delegateToPass); // Calls doStuff, prints "Hello, world."
* ----
*
* BUGS:
* $(UL
* $(LI Does not work with $(D @safe) functions.)
* $(LI Ignores C-style / D-style variadic arguments.)
* )
*/
auto toDelegate(F)(auto ref F fp) if (isCallable!(F))
{
static if (is(F == delegate))
{
return fp;
}
else static if (is(typeof(&F.opCall) == delegate)
|| (is(typeof(&F.opCall) V : V*) && is(V == function)))
{
return toDelegate(&fp.opCall);
}
else
{
alias typeof(&(new DelegateFaker!(F)).doIt) DelType;
static struct DelegateFields {
union {
DelType del;
//pragma(msg, typeof(del));
struct {
void* contextPtr;
void* funcPtr;
}
}
}
// fp is stored in the returned delegate's context pointer.
// The returned delegate's function pointer points to
// DelegateFaker.doIt.
DelegateFields df;
df.contextPtr = cast(void*) fp;
DelegateFaker!(F) dummy;
auto dummyDel = &(dummy.doIt);
df.funcPtr = dummyDel.funcptr;
return df.del;
}
}
unittest {
static int inc(ref uint num) {
num++;
return 8675309;
}
uint myNum = 0;
auto incMyNumDel = toDelegate(&inc);
static assert(is(typeof(incMyNumDel) == int delegate(ref uint)));
auto returnVal = incMyNumDel(myNum);
assert(myNum == 1);
interface I { int opCall(); }
class C: I { int opCall() { inc(myNum); return myNum;} }
auto c = new C;
auto i = cast(I) c;
auto getvalc = toDelegate(c);
assert(getvalc() == 2);
auto getvali = toDelegate(i);
assert(getvali() == 3);
struct S1 { int opCall() { inc(myNum); return myNum; } }
static assert(!is(typeof(&s1.opCall) == delegate));
S1 s1;
auto getvals1 = toDelegate(s1);
assert(getvals1() == 4);
struct S2 { static int opCall() { return 123456; } }
static assert(!is(typeof(&S2.opCall) == delegate));
S2 s2;
auto getvals2 =&S2.opCall;
assert(getvals2() == 123456);
/* test for attributes */
{
static int refvar = 0xDeadFace;
static ref int func_ref() { return refvar; }
static int func_pure() pure { return 1; }
static int func_nothrow() nothrow { return 2; }
static int func_property() @property { return 3; }
static int func_safe() @safe { return 4; }
static int func_trusted() @trusted { return 5; }
static int func_system() @system { return 6; }
static int func_pure_nothrow() pure nothrow { return 7; }
static int func_pure_nothrow_safe() pure @safe { return 8; }
auto dg_ref = toDelegate(&func_ref);
auto dg_pure = toDelegate(&func_pure);
auto dg_nothrow = toDelegate(&func_nothrow);
auto dg_property = toDelegate(&func_property);
//auto dg_safe = toDelegate(&func_safe);
auto dg_trusted = toDelegate(&func_trusted);
auto dg_system = toDelegate(&func_system);
auto dg_pure_nothrow = toDelegate(&func_pure_nothrow);
//auto dg_pure_nothrow_safe = toDelegate(&func_pure_nothrow_safe);
//static assert(is(typeof(dg_ref) == ref int delegate())); // [BUG@DMD]
static assert(is(typeof(dg_pure) == int delegate() pure));
static assert(is(typeof(dg_nothrow) == int delegate() nothrow));
static assert(is(typeof(dg_property) == int delegate() @property));
//static assert(is(typeof(dg_safe) == int delegate() @safe));
static assert(is(typeof(dg_trusted) == int delegate() @trusted));
static assert(is(typeof(dg_system) == int delegate() @system));
static assert(is(typeof(dg_pure_nothrow) == int delegate() pure nothrow));
//static assert(is(typeof(dg_pure_nothrow_safe) == int delegate() pure nothrow @safe));
assert(dg_ref() == refvar);
assert(dg_pure() == 1);
assert(dg_nothrow() == 2);
assert(dg_property() == 3);
//assert(dg_safe() == 4);
assert(dg_trusted() == 5);
assert(dg_system() == 6);
assert(dg_pure_nothrow() == 7);
//assert(dg_pure_nothrow_safe() == 8);
}
/* test for linkage */
{
struct S
{
extern(C) static void xtrnC() {}
extern(D) static void xtrnD() {}
}
auto dg_xtrnC = toDelegate(&S.xtrnC);
auto dg_xtrnD = toDelegate(&S.xtrnD);
static assert(! is(typeof(dg_xtrnC) == typeof(dg_xtrnD)));
}
}
|