This file is indexed.

/usr/lib/petscdir/3.1/include/sieve/UFCProblem.hh is in libpetsc3.1-dev 3.1.dfsg-11ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#ifndef __UFCProblem
#define __UFCProblem

/*
  UFC Problem class for sieve; allows for UFC-assembled problems to be "bundled"

 */


#include <Mesh.hh>
#include <FEMProblem.hh>
#include <ufc.h>

namespace ALE {
  namespace Problem {

    class UFCHook { //initialize all the data from the UFC forms so we don't need to keep redoing it
    public:

      //the model for this is of course b(u, v) = (l(v), f)... because it's UFC.
      //if we need to extend this make these into sets.

      ufc::form * _lform;
      ufc::form * _bform;

      //finite elements

      ufc::finite_element * _b_finite_element; //the thing upon which the cell integral is defined; however we want to crack it open for discretizations
      ufc::finite_element * _l_finite_element; //ditto

      std::map<int, ufc::finite_element *> _b_sub_finite_elements; 
      std::map<int, ufc::finite_element *> _l_sub_finite_elements;
      
      ufc::shape _cell_shape;

      ufc::cell * _cell; //assume, for now, that the mesh has one cell type

      //cell integrals

      std::map<int, ufc::cell_integral *> _b_cell_integrals;
      std::map<int, ufc::cell_integral *> _l_cell_integrals;

      //interior facet integrals

      std::map<int, ufc::interior_facet_integral *> _b_interior_facet_integrals;
      std::map<int, ufc::interior_facet_integral *> _l_interior_facet_integrals;

      //exterior facet integrals

      std::map<int, ufc::exterior_facet_integral *> _b_exterior_facet_integrals;
      std::map<int, ufc::exterior_facet_integral *> _l_exterior_facet_integrals;

    public:
      
      UFCHook(ufc::form * bform, ufc::form * lform) {

	_bform = bform;
	_lform = lform;
	
	//set up the cell, the finite_elements, the cell integrals
	
	//create the cell integrals
	//_num_l_cell_integrals = lform->num_cell_integrals();
	//_l_cell_integrals = new ufc::cell_integral *[_num_l_cell_integrals];
	for (unsigned int i = 0; i < lform->num_cell_integrals(); i++) {
	  _l_cell_integrals[i] = _lform->create_cell_integral(i);
	}

	if (_l_cell_integrals.size() == 0) throw Exception("No linear integrals in the form");
	
	//_num_b_cell_integrals = bform->num_cell_integrals();
	//_b_cell_integrals = new ufc::cell_integral *[_num_l_cell_integrals];
	for (unsigned int i = 0; i < bform->num_cell_integrals(); i++) {
	  _b_cell_integrals[i] = bform->create_cell_integral(i);
	}
	
	if (_b_cell_integrals.size() == 0) {
	  throw Exception("No bilinear integrals in the form");
	}
	
	//create the finite elements for the bform and lform; they should be the same I do believe

	_b_finite_element = _bform->create_finite_element(0);	//the other appears to be for quadrature

	//_num_finite_elements = _bform->num_coefficients() + _bform->rank();//_bform->num_finite_elements();
	//_finite_elements = new ufc::finite_element *[_num_finite_elements];

	if (_b_finite_element->num_sub_elements() > 1) for (unsigned int i = 0; i < _b_finite_element->num_sub_elements(); i++) {
	  _b_sub_finite_elements[i] = _b_finite_element->create_sub_element(i);
	}
	
	/*
	if (_b_sub_finite_elements.size() == 0) {
	  throw Exception("No finite elements in the form");
	}
	*/

	_l_finite_element = _lform->create_finite_element(0);

	//_num_coefficient_elements = _lform->num_coefficients() + _lform->rank();
	//_coefficient_elements = new ufc::finite_element *[_num_coefficient_elements];
	if (_l_finite_element->num_sub_elements() > 1) for (unsigned int i = 0; i < _l_finite_element->num_sub_elements(); i++) {
	  _l_sub_finite_elements[i] = lform->create_finite_element(i);
	}

	/*
	if (_l_sub_finite_elements.size() == 0) {
	  throw Exception("No coefficient elements in the form");
	}
	*/
	
	int dim, embedDim;
	//derive these from the mesh and/or the finite element;
	_cell = new ufc::cell;
	
	
	_cell_shape = _l_finite_element->cell_shape();


	if (_cell_shape == ufc::interval) {
	  dim = 1;
	  embedDim = 1;
	  _cell->entity_indices = new unsigned int *[dim+1];
	  _cell->entity_indices[0] = new unsigned int[2];
	  _cell->entity_indices[1] = new unsigned int[1];
	} else if (_cell_shape == ufc::triangle) {
	  dim = 2;
	  embedDim = 2;
	  _cell->entity_indices = new unsigned int *[dim+1];
	  _cell->entity_indices[0] = new unsigned int[3];
	  _cell->entity_indices[1] = new unsigned int[3];
	  _cell->entity_indices[2] = new unsigned int[1];
	} else if (_cell_shape == ufc::tetrahedron) {
	  dim = 3;
	  embedDim = 3;
	  _cell->entity_indices = new unsigned int *[dim+1];
	  _cell->entity_indices[0] = new unsigned int[4];
	  _cell->entity_indices[1] = new unsigned int[6];
	  _cell->entity_indices[2] = new unsigned int[4];
	  _cell->entity_indices[3] = new unsigned int[1];
	} else {
	  throw Exception("Unknown cell shape");
	}
	//create the cell
	_cell->topological_dimension = dim;
	_cell->geometric_dimension = embedDim;
	double * tmpCoords = new double[(dim+1)*embedDim];
	_cell->coordinates = new double *[dim+1];
	for (int i = 0; i < dim+1; i++) {
	  _cell->coordinates[i] = &tmpCoords[i*embedDim];
	}
	
      }
      
      ~UFCHook() {
	//remove all this stuff
	delete _lform;
	delete _bform;
	std::map<int, ufc::cell_integral *>::iterator i_iter = _l_cell_integrals.begin();
	std::map<int, ufc::cell_integral *>::iterator i_iter_end = _l_cell_integrals.end();
	while (i_iter != i_iter_end) {
	  delete i_iter->second;
	  i_iter++;
	}
	i_iter = _b_cell_integrals.begin();
	i_iter_end = _b_cell_integrals.end();
	while (i_iter != i_iter_end) {
	  delete i_iter->second;
	  i_iter++;
	}
	std::map<int, ufc::finite_element *>::iterator f_iter = _l_sub_finite_elements.begin();
	std::map<int, ufc::finite_element *>::iterator f_iter_end = _l_sub_finite_elements.end();
	while (f_iter != f_iter_end) {
	  delete f_iter->second;
	  f_iter++;
	}	 
	delete _cell->coordinates[0];
	delete _cell->coordinates;
      }

      //accessors
      

      void setCell(Obj<PETSC_MESH_TYPE> m, PETSC_MESH_TYPE::point_type c) {
	//setup the cell object such that it contains the mesh cell given
	
	const Obj<PETSC_MESH_TYPE::sieve_type> s = m->getSieve();
	Obj<PETSC_MESH_TYPE::real_section_type> coordinates = m->getRealSection("coordinates");
	int dim = m->getDimension();
	if ((int)_cell->topological_dimension != m->getDimension() - m->height(c)) throw ALE::Exception("Wrong element dimension for this UFC form");
	//int depth = m->depth();
	//the entity indices should be FIXED because we don't care to use any of the DoFMap stuff
	ISieveVisitor::PointRetriever<PETSC_MESH_TYPE::sieve_type> pV((int) pow(m->getSieve()->getMaxConeSize(), m->depth())+1, true);
	ISieveTraversal<PETSC_MESH_TYPE::sieve_type>::orientedClosure(*m->getSieve(), c, pV);

	const PETSC_MESH_TYPE::point_type * oPoints = pV.getPoints();
	int num_oPoints = pV.getSize();
	int vertex_index = 0;
	for (int t = 0; t < num_oPoints; t++) {
	  if (m->depth(oPoints[t]) == 0) {
	    // _cell->entity_indices[0][vertex_index] = oPoints[t];
	      const double * tmpcoords = coordinates->restrictPoint(oPoints[t]);
	      for (int i = 0; i < dim; i++) {
		_cell->coordinates[vertex_index][i] = tmpcoords[i];
	      }
	      vertex_index++;
	  }
	} 
      }
    };

#if 0

    class UFCCell : GeneralCell {
    private:
      ufc::cell * _cell; //the UFC cell.
    public:
      UFCCell (ufc::shape shape, int embed_dimension) : GeneralCell() {
	_embedded_dimension = embed_dimension;
	if (shape == ufc::interval) {
	  //allocate coordinates
	  _num_vertices = 2;
	  _coordinates = new double [_num_vertices*_embedded_dimension];
	  //setup the closure reorder
	  //setup the ufc::cell
	} else if (shape == ufc::triangle) {
	  //allocate coordinates
	  _num_vertices = 3;
	  _coordinates = new double [_num_vertices*_embedded_dimension];
	  //setup the closure reorder
	  //setup the ufc::cell
	} else if (shape == ufc::tetrahedron) {
	  //allocate coordinates
	  _num_vertices = 4;
	  _coordinates = new double [_num_vertices*_embedded_dimension];
	  //setup the closure reorder
	  //setup the ufc::cell
	} else throw Exception("UFCCell: Unsupported Shape");
      }
    };
    
#endif

    class UFCBoundaryCondition : public GeneralBoundaryCondition {
    private:
      //exact function

      ufc::function * _function;     //this will be evaluated to set the conditions.
      ufc::function * _exactSol;     //this will be evaluated in the case that there is an analytic solution to the associated problem.
      ufc::finite_element * _finite_element; //we have to evaluate both the function and the exactsol at some point
      ufc::cell * _cell;                     //ugh
      int * _closure2data;                    //map of LOCAL DISCRETIZATION closure dof indices to data dof indices; used for evaluation


    public:
      UFCBoundaryCondition(MPI_Comm comm, int debug = 0) : GeneralBoundaryCondition(comm, debug) {
	_function = PETSC_NULL;
	_exactSol = PETSC_NULL;
      }

      UFCBoundaryCondition(MPI_Comm comm, ufc::function * function, ufc::function * exactsol, ufc::finite_element * element, ufc::cell * cell, const std::string& name, const int marker, int debug = 0) : GeneralBoundaryCondition(comm, debug){
	_function = function;
	_exactSol = exactsol;
	this->setFiniteElement(element);
	_cell = cell;
	this->setLabelName(name);
	this->setMarker(marker);
      }

      void setFiniteElement(ufc::finite_element * finite_element) {
	_finite_element = finite_element;
      }
      
      ufc::finite_element * getFiniteElement() {
	return _finite_element;
      }
      
      void setCell(ufc::cell * cell) {
	_cell = cell;
      }

      ufc::cell * getCell() {
	return _cell;
      }

      void setFunction(ufc::function * function) {
	_function = function;
      }

      ufc::function * getFunction() {
	return _function;
      }

      //SHOULD be the same as the closure reorder for the overlying discretization.   This is just for library interface of course.

      virtual void setReorder(int * reorder) {
	this->_closure2data = reorder;
      }

      virtual const int * getReorder() {
	return this->_closure2data;
      }


      //yeargh!  do we ever use evaluate explicitly?
      virtual double integrateDual(unsigned int dof) {
	int ufc_dof;
	ufc_dof = this->getReorder()[dof];
	//just evaluate the function using the coordinates; assume the order doesn't get that screwed up
	return this->_finite_element->evaluate_dof(ufc_dof, *_function, *_cell);
      }
    };
      
    class UFCDiscretization : public GeneralDiscretization {
      //implementation of the discretization class that provides UFC hooks.
    private:
      //Each form will have the finite element -- not true; you have to associate by which part of the SPACE the
      //integral exists over.  So, we must assign each integral to the appropriate space (as we might have TWO integrals
      //over say, the interior and then a boundary integral NOT TRUE AGAIN! all the integrals have to happen over the
      //overall form; they must be done a class up.  This should just be used to segment the space
      //
      ufc::cell           * _cell;
      ufc::finite_element * _finite_element;  //this will typically be a subelement.
      ufc::function * _rhs_function;          //TODO: generalize this further
 
    public:
      UFCDiscretization(MPI_Comm comm, int debug = 1) : GeneralDiscretization(comm, debug) {
      }

      UFCDiscretization(MPI_Comm comm, ufc::finite_element * element, ufc::cell * cell, int debug = 1) : GeneralDiscretization(comm, debug){
	_finite_element = element;
	_cell = cell;
      }

      ~UFCDiscretization() {
      }

      virtual void createReorder() {
	
	//create the forward and backward maps to and from UFC data layout to closure data layout.
	//do this case-by-case with info from the discretization
	
	int * reorder = new int[this->size()];
	std::map<int, int> closure_offsets;
	int offset = 0;
	if (this->getFiniteElement()->cell_shape() == ufc::interval) {
	  //find the indices corresponding to every point in the topology and assume they're ordered right; if not then we redo this later.
	  closure_offsets[0] = 0;
	  offset += this->getNumDof(1);
	  closure_offsets[1] = offset;
	  offset += this->getNumDof(0);
	  closure_offsets[2] = offset;
	  offset += this->getNumDof(0);
	  //we know the reorder; do it!
	  int offset = 0;
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[1] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[2] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[0] + i] = offset; 
	} else if (this->getFiniteElement()->cell_shape() == ufc::triangle) {
	  closure_offsets[0] = 0;
	  offset += this->getNumDof(2);
	  closure_offsets[1] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[2] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[3] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[4] = offset;
	  offset += this->getNumDof(0);
	  closure_offsets[5] = offset;
	  offset += this->getNumDof(0);
	  closure_offsets[6] = offset;
	  offset += this->getNumDof(0);
	  //we know the reorder; do it!
	  int offset = 0;
	  //this order is checked -- and appears to be right
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[4] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[5] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[6] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[2] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[3] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[1] + i] = offset;
 	  for (int i = 0; i < this->getNumDof(2); i++, offset++) reorder[closure_offsets[0] + i] = offset;
	  //TET!
	} else if (this->getFiniteElement()->cell_shape() == ufc::tetrahedron) {
	  closure_offsets[0] = 0;
	  offset += this->getNumDof(3);
	  closure_offsets[1] = offset;
	  offset += this->getNumDof(2);
	  closure_offsets[2] = offset;
	  offset += this->getNumDof(2);
	  closure_offsets[3] = offset;
	  offset += this->getNumDof(2);
	  closure_offsets[4] = offset;
	  offset += this->getNumDof(2);
	  closure_offsets[5] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[6] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[7] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[8] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[9] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[10] = offset;
	  offset += this->getNumDof(1);
	  closure_offsets[11] = offset;
	  offset += this->getNumDof(0);
	  closure_offsets[12] = offset;
	  offset += this->getNumDof(0);
	  closure_offsets[13] = offset;
	  offset += this->getNumDof(0);
	  closure_offsets[14] = offset;
	  offset += this->getNumDof(0);
	  //we know the reorder; do it!
	  int offset = 0;
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[11] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[12] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[13] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(0); i++, offset++) reorder[closure_offsets[14] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[10] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[9] + i] = offset;
 	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[6] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[8] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[7] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(1); i++, offset++) reorder[closure_offsets[5] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(2); i++, offset++) reorder[closure_offsets[4] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(2); i++, offset++) reorder[closure_offsets[3] + i] = offset; 
	  for (int i = 0; i < this->getNumDof(2); i++, offset++) reorder[closure_offsets[2] + i] = offset;
 	  for (int i = 0; i < this->getNumDof(2); i++, offset++) reorder[closure_offsets[1] + i] = offset; 
 	  for (int i = 0; i < this->getNumDof(3); i++, offset++) reorder[closure_offsets[0] + i] = offset; 
	} else {
	  throw Exception("UFCDiscretization->createReordering(): unsupported cell geometry");
	}
	this->setReorder(reorder);
	//set this as the reorder of all boundary conditions involved here.
	Obj<names_type> bcs = this->getBoundaryConditions();
	names_type::iterator bc_iter = bcs->begin();
	names_type::iterator bc_iter_end = bcs->end();
	while (bc_iter != bc_iter_end) {
	  Obj<GeneralBoundaryCondition> bc = this->getBoundaryCondition(*bc_iter);
	  bc->setReorder(reorder);
	  bc_iter++;
	}
      }
	
      virtual void setReorder(const int * _reordering) {
	_closure2data = _reordering;
      }

      virtual const int * getReorder() {
	return _closure2data;
      }
 
      void setRHSFunction(ufc::function * function) {
	_rhs_function = function;
      }

      ufc::function * getRHSFunction() {
	return _rhs_function;
      }

      virtual double evaluateRHS(int dof) {

	//our notion of a degree of freedom in this case is a little different from the one used by UFC; they have the whole dimension of the vector space as 
	//one DOF with multiple coefficients; for the sake of being able to loop independent of the vector space here we split it up.

	int ufc_dof;
	if (_cell == PETSC_NULL) throw Exception("UFCBoundaryCondition->integrateDual: cell is not initialized");
	//TODO reordering 
	ufc_dof = this->getReorder()[dof];
	//switch the order

	//TODO: reorder based upon the cell attributes -- switch the dof_index to be the screwy indices as used by the
	//cells... this requires knowledge of the dofs per dim here

	//just evaluate the function using the coordinates; assume the order doesn't get that screwed up

	return _finite_element->evaluate_dof(ufc_dof, *_rhs_function, *_cell);
      }

      int size() {
	return _finite_element->space_dimension();
      }

      ufc::finite_element * getFiniteElement() {return _finite_element;};
      void setFiniteElement(ufc::finite_element * element) {_finite_element = element;};
      ufc::cell * getCell() {return _cell;};
      void setCell(ufc::cell * cell) {_cell = cell;};

    };

    class UFCCellIntegral : public GeneralIntegral {
    private:
      ufc::cell_integral * _integral;
      ufc::cell * _cell;
      const double ** _coefficients;
      double * _tmp_tensor;               //allows for us to reorder on the fly.
      double * _tmp_coefficients;
    public:
      UFCCellIntegral(MPI_Comm comm, int debug = 1) : GeneralIntegral(comm, debug) {
	this->_tmp_tensor = PETSC_NULL;
	this->_tmp_coefficients = PETSC_NULL;
	this->_integral = PETSC_NULL;
	this->_cell = PETSC_NULL;
	this->_coefficients = PETSC_NULL;
      }

      UFCCellIntegral(MPI_Comm comm, ufc::cell_integral * integral, ufc::cell * cell, name_type name, int label, int rank, int dimension, int ncoefficients = 0, int debug = 0) : GeneralIntegral(comm, name, label, ncoefficients, debug){
	this->_integral = integral;
	this->_cell = cell;
	this->setTensorRank(rank);
	this->setSpaceDimension(dimension);
	this->setNumCoefficients(ncoefficients);
	if (rank == 1) {
	  this->_tmp_tensor = new double[dimension];
	} else if (rank == 2) {
	  this->_tmp_tensor = new double[dimension*dimension];
	} else {
	  throw Exception("UFCCellIntegral::UFCCellIntegral(): unsupported tensor rank");
	}
	if (ncoefficients) {
	  this->_tmp_coefficients = new double[dimension*ncoefficients];
	  this->_coefficients = new const double*[ncoefficients];
	} else this->_coefficients = PETSC_NULL;
      }

      virtual ~UFCCellIntegral() {
	delete _coefficients;
	if (_tmp_tensor) delete _tmp_tensor;
	if (_tmp_coefficients) delete _tmp_coefficients;
      };

      virtual ufc::cell * getCell() {
	return _cell;
      }

      virtual void setCell(ufc::cell * cell) {
	_cell = cell;
      }

      virtual void setIntegral(ufc::cell_integral * integral) {
	_integral = integral;
      }
      
      virtual ufc::cell_integral * getIntegral () {
	return _integral;
      }


      //there will eventually be some reordering occuring here, but for now just assume we've done the right thing.
      virtual void tabulateTensor(double * tensor, const double * coefficients = PETSC_NULL) {
	//just run the frickin' tabulate_tensor routine from the form on what gets spit out by restrictClosure right now; rebuild or reorder later.
	//the coefficients have come in in
	if (this->getNumCoefficients()) {
	  for (int c = 0; c < this->getNumCoefficients(); c++) {
	    this->_coefficients[c] = &_tmp_coefficients[c*this->getNumCoefficients()];
	    for (int i = 0; i < this->getSpaceDimension(); i++) {
	      //reorder the coefficients into the _tmp_coefficients array
	      _tmp_coefficients[c*this->getNumCoefficients() + this->getReorder()[i]] = coefficients[i*this->getNumCoefficients() + c]; //may be wrong.
	    }
	  }
	}

	//the coefficients should already be reordered from the closure order to the normal order based upon the set
	_integral->tabulate_tensor(_tmp_tensor, _coefficients, *_cell);
	//reorder the tabulated tensor
	if (this->getTensorRank() == 1) {
	  for (int f = 0; f < this->getSpaceDimension(); f++) {
	    tensor[f] = _tmp_tensor[this->getReorder()[f]];
	  }
	}else if (this->getTensorRank() == 2) {
	  for (int f = 0; f < this->getSpaceDimension(); f++) {
	    for (int g = 0; g < this->getSpaceDimension(); g++) {
	      tensor[f*this->getSpaceDimension()+g] = _tmp_tensor[this->getReorder()[f]*this->getSpaceDimension()+this->getReorder()[g]]; //this should reorder it right.
	    }
	  }
	}
      }
    };

    //TODO: interior; exterior integral forms; these will have their own reordering notion.

    class UFCFormSubProblem : public GenericFormSubProblem {
      
      //Data and helper functions:

    private:

      ufc::cell * _cell;                     //we'll have to pass this on to all the children of this class;
      ufc::finite_element * _full_finite_element;  //the big one with all unknowns (even mixed) described.  all integrals are assumed to be defined on it

    public:

      UFCFormSubProblem(MPI_Comm comm, int debug = 0) : GenericFormSubProblem(comm, debug) {
	//yeah
	_cell = PETSC_NULL;
	_full_finite_element = PETSC_NULL;
      }

      UFCFormSubProblem(MPI_Comm comm, ufc::cell * cell, ufc::finite_element * finite_element, int debug = 0) : GenericFormSubProblem(comm, debug) {
	_cell = cell;  //yeargh!
	_full_finite_element = finite_element;
      }
      
      UFCFormSubProblem(MPI_Comm comm, ufc::form * b_form, ufc::form * l_form, int debug = 0) : GenericFormSubProblem(comm, debug){
	//set up the discretizations, integrals, and other things; discretization-level things like boundary conditions must be set separately of course.
	//set the main finite element, the sub-elements, and 
      }

      ufc::cell * getCell() {
	return _cell;
      }

      ufc::finite_element * getFiniteElement() {
	return _full_finite_element;
      }

      virtual int localSpaceDimension() {
	return _full_finite_element->space_dimension();
      }

      virtual void createReorder () {
	/*
	  GOAL: keep all interface-level things (in the other file) in *closure* order.
	  

	  The UFC ordering is assumed to go: 
	  1. discretization 1 entry 0 reordered per-cell like UFC
	     discretization 1 entry 1 ...
	  2. discretization 2 reordered per-cell like UFC
	  ... etc
	  
	  So, we first pull apart each discretization and reorder (based upon the indices of that discretization and the rank of the form, then based upon the discretization

	  Then pass the overall reorder to each integral to make all of this go smoothly.

	 */
	
	int * reorder = new int[this->localSpaceDimension()];
	//PetscPrintf(PETSC_COMM_WORLD, "starting the reorder calculation\n");
	//loop over discretizations, creating the local reorders
	Obj<names_type> discs = this->getDiscretizations();
	int offset = 0;
	for (names_type::const_iterator d_iter = discs->begin(); d_iter != discs->end(); d_iter++) {
	  const Obj<GeneralDiscretization> disc = this->getDiscretization(*d_iter);
	  disc->createReorder();
	  const int * disc_indices = disc->getIndices();
	  const int * disc_reorder = disc->getReorder();
	  int disc_size = disc->size();
	  //PetscPrintf(PETSC_COMM_WORLD, "disc %s size: %d\n", (*d_iter).c_str(), disc_size);
	  for (int i = 0; i < disc_size; i++) {
	    reorder[disc_indices[i]] = disc_reorder[i] + offset;
	    //PetscPrintf(PETSC_COMM_WORLD, "map closure dof index %d to %d\n", disc_indices[i], reorder[disc_indices[i]]);
	  }
	  offset += disc_size;
	//use the discretizations closure indices to reorder the whole-field indices
	}	
	//set the reorder and set all the cell integrals to have this reorder as well.  Unfortunately this will take some hacking for the interior facet integrals.
	this->setReorder(reorder);
	Obj<names_type> integrals = this->getIntegrals();
	names_type::iterator i_iter = integrals->begin();
	names_type::iterator i_iter_end = integrals->end();
	while (i_iter != i_iter_end) {
	  Obj<GeneralIntegral> integral = this->getIntegral(*i_iter);
	  integral->setReorder(reorder);
	  i_iter++;
	}
      }

      virtual void setCell(Obj<PETSC_MESH_TYPE> mesh, PETSC_MESH_TYPE::point_type c) const {
	if (_cell == PETSC_NULL) throw Exception("UFCFormSubProblem: Uninitialized cell");
	Obj<PETSC_MESH_TYPE::real_section_type> coords = mesh->getRealSection("coordinates");
	const double * cellcoords = mesh->restrictClosure(coords, c);
	int index = 0;
	for (unsigned int i = 0; i < _cell->topological_dimension+1; i++) {
	  for (unsigned int j = 0; j < _cell->geometric_dimension; j++) {
	    _cell->coordinates[i][j] = cellcoords[index];
	    index++;
	  }
	}
      }

      ~UFCFormSubProblem(){};
      
    };
  }
}

#endif