This file is indexed.

/usr/lib/petscdir/3.1/include/sieve/SieveAlgorithms.hh is in libpetsc3.1-dev 3.1.dfsg-11ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#ifndef included_ALE_SieveAlgorithms_hh
#define included_ALE_SieveAlgorithms_hh

#ifndef  included_ALE_Sieve_hh
#include <Sieve.hh>
#endif

namespace ALE {
  template<typename Bundle_>
  class SieveAlg {
  public:
    typedef Bundle_                                  bundle_type;
    typedef typename bundle_type::sieve_type         sieve_type;
    typedef typename sieve_type::point_type          point_type;
    typedef typename sieve_type::coneSet             coneSet;
    typedef typename sieve_type::coneArray           coneArray;
    typedef typename sieve_type::supportSet          supportSet;
    typedef typename sieve_type::supportArray        supportArray;
    typedef typename bundle_type::arrow_section_type arrow_section_type;
    typedef std::pair<point_type, int>               oriented_point_type;
    typedef ALE::array<oriented_point_type>          orientedConeArray;
  protected:
    typedef MinimalArrow<point_type, point_type>     arrow_type;
    typedef std::pair<arrow_type, int>               oriented_arrow_type;
    typedef ALE::array<oriented_arrow_type>          orientedArrowArray;
  public:
    static Obj<coneArray> closure(const Obj<bundle_type>& bundle, const point_type& p) {
      return closure(bundle.ptr(), bundle->getArrowSection("orientation"), p);
    };
    static Obj<coneArray> closure(const Bundle_ *bundle, const Obj<arrow_section_type>& orientation, const point_type& p) {
      const Obj<sieve_type>&  sieve   = bundle->getSieve();
      const int               depth   = bundle->depth();
      Obj<orientedArrowArray> cone    = new orientedArrowArray();
      Obj<orientedArrowArray> base    = new orientedArrowArray();
      Obj<coneArray>          closure = new coneArray();
      coneSet                 seen;

      // Cone is guarateed to be ordered correctly
      const Obj<typename sieve_type::traits::coneSequence>& initCone = sieve->cone(p);

      closure->push_back(p);
      for(typename sieve_type::traits::coneSequence::iterator c_iter = initCone->begin(); c_iter != initCone->end(); ++c_iter) {
        cone->push_back(oriented_arrow_type(arrow_type(*c_iter, p), 1));
        closure->push_back(*c_iter);
      }
      for(int i = 1; i < depth; ++i) {
        Obj<orientedArrowArray> tmp = cone; cone = base; base = tmp;

        cone->clear();
        for(typename orientedArrowArray::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
          const arrow_type&                                     arrow = b_iter->first;
          const Obj<typename sieve_type::traits::coneSequence>& pCone = sieve->cone(arrow.source);
          typename arrow_section_type::value_type               o     = orientation->restrictPoint(arrow)[0];

          if (b_iter->second < 0) {
            o = -(o+1);
          }
          if (o < 0) {
            const int size = pCone->size();

            if (o == -size) {
              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter) {
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  closure->push_back(*c_iter);
                }
              }
            } else {
              const int numSkip = size + o;
              int       count   = 0;

              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter, ++count) {
                if (count < numSkip) continue;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  closure->push_back(*c_iter);
                }
              }
              count = 0;
              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter, ++count) {
                if (count >= numSkip) break;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  closure->push_back(*c_iter);
                }
              }
            }
          } else {
            if (o == 1) {
              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter) {
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  closure->push_back(*c_iter);
                }
              }
            } else {
              const int numSkip = o-1;
              int       count   = 0;

              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter, ++count) {
                if (count < numSkip) continue;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  closure->push_back(*c_iter);
                }
              }
              count = 0;
              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter, ++count) {
                if (count >= numSkip) break;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  closure->push_back(*c_iter);
                }
              }
            }
          }
        }
      }
      return closure;
    };
    static Obj<orientedConeArray> orientedClosure(const Obj<bundle_type>& bundle, const point_type& p) {
      return orientedClosure(bundle.ptr(), bundle->getArrowSection("orientation"), p);
    };
    static Obj<orientedConeArray> orientedClosure(const bundle_type *bundle, const Obj<arrow_section_type>& orientation, const point_type& p) {
      const Obj<sieve_type>&  sieve   = bundle->getSieve();
      const int               depth   = bundle->depth();
      Obj<orientedArrowArray> cone    = new orientedArrowArray();
      Obj<orientedArrowArray> base    = new orientedArrowArray();
      Obj<orientedConeArray>  closure = new orientedConeArray();
      coneSet                 seen;

      // Cone is guarateed to be ordered correctly
      const Obj<typename sieve_type::traits::coneSequence>& initCone = sieve->cone(p);

      closure->push_back(oriented_point_type(p, 0));
      for(typename sieve_type::traits::coneSequence::iterator c_iter = initCone->begin(); c_iter != initCone->end(); ++c_iter) {
        const arrow_type arrow(*c_iter, p);

        cone->push_back(oriented_arrow_type(arrow, 1));
        closure->push_back(oriented_point_type(*c_iter, orientation->restrictPoint(arrow)[0]));
      }
      for(int i = 1; i < depth; ++i) {
        Obj<orientedArrowArray> tmp = cone; cone = base; base = tmp;

        cone->clear();
        for(typename orientedArrowArray::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
          const arrow_type&                                     arrow = b_iter->first;
          const Obj<typename sieve_type::traits::coneSequence>& pCone = sieve->cone(arrow.source);
          typename arrow_section_type::value_type               o     = orientation->restrictPoint(arrow)[0];

          if (b_iter->second < 0) {
            o = -(o+1);
          }
          if (o < 0) {
            const int size = pCone->size();

            if (o == -size) {
              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter) {
                if (seen.find(*c_iter) == seen.end()) {
                  const arrow_type newArrow(*c_iter, arrow.source);
                  int              pointO = orientation->restrictPoint(newArrow)[0];

                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(newArrow, o));
                  closure->push_back(oriented_point_type(*c_iter, pointO ? -(pointO+1): pointO));
                }
              }
            } else {
              const int numSkip = size + o;
              int       count   = 0;

              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter, ++count) {
                if (count < numSkip) continue;
                if (seen.find(*c_iter) == seen.end()) {
                  const arrow_type newArrow(*c_iter, arrow.source);
                  int              pointO = orientation->restrictPoint(newArrow)[0];

                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(newArrow, o));
                  closure->push_back(oriented_point_type(*c_iter, pointO ? -(pointO+1): pointO));
                }
              }
              count = 0;
              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter, ++count) {
                if (count >= numSkip) break;
                if (seen.find(*c_iter) == seen.end()) {
                  const arrow_type newArrow(*c_iter, arrow.source);
                  int              pointO = orientation->restrictPoint(newArrow)[0];

                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(newArrow, o));
                  closure->push_back(oriented_point_type(*c_iter, pointO ? -(pointO+1): pointO));
                }
              }
            }
          } else {
            if (o == 1) {
              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter) {
                if (seen.find(*c_iter) == seen.end()) {
                  const arrow_type newArrow(*c_iter, arrow.source);

                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(newArrow, o));
                  closure->push_back(oriented_point_type(*c_iter, orientation->restrictPoint(newArrow)[0]));
                }
              }
            } else {
              const int numSkip = o-1;
              int       count   = 0;

              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter, ++count) {
                if (count < numSkip) continue;
                if (seen.find(*c_iter) == seen.end()) {
                  const arrow_type newArrow(*c_iter, arrow.source);

                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(newArrow, o));
                  closure->push_back(oriented_point_type(*c_iter, orientation->restrictPoint(newArrow)[0]));
                }
              }
              count = 0;
              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter, ++count) {
                if (count >= numSkip) break;
                if (seen.find(*c_iter) == seen.end()) {
                  const arrow_type newArrow(*c_iter, arrow.source);

                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(newArrow, o));
                  closure->push_back(oriented_point_type(*c_iter, orientation->restrictPoint(newArrow)[0]));
                }
              }
            }
          }
        }
      }
      return closure;
    };
    static Obj<coneArray> nCone(const Obj<bundle_type>& bundle, const point_type& p, const int n) {
      const Obj<sieve_type>&         sieve       = bundle->getSieve();
      const Obj<arrow_section_type>& orientation = bundle->getArrowSection("orientation");
      const int                      height      = std::min(n, bundle->height());
      Obj<orientedArrowArray>        cone        = new orientedArrowArray();
      Obj<orientedArrowArray>        base        = new orientedArrowArray();
      Obj<coneArray>                 nCone       = new coneArray();
      coneSet                        seen;

      if (height == 0) {
        nCone->push_back(p);
        return nCone;
      }

      // Cone is guarateed to be ordered correctly
      const Obj<typename sieve_type::traits::coneSequence>& initCone = sieve->cone(p);

      if (height == 1) {
        for(typename sieve_type::traits::coneSequence::iterator c_iter = initCone->begin(); c_iter != initCone->end(); ++c_iter) {
          nCone->push_back(*c_iter);
        }
        return nCone;
      } else {
        for(typename sieve_type::traits::coneSequence::iterator c_iter = initCone->begin(); c_iter != initCone->end(); ++c_iter) {
          cone->push_back(oriented_arrow_type(arrow_type(*c_iter, p), 1));
        }
      }
      for(int i = 1; i < height; ++i) {
        Obj<orientedArrowArray> tmp = cone; cone = base; base = tmp;

        cone->clear();
        for(typename orientedArrowArray::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
          const arrow_type&                                     arrow = b_iter->first;
          const Obj<typename sieve_type::traits::coneSequence>& pCone = sieve->cone(arrow.source);
          typename arrow_section_type::value_type               o     = orientation->restrictPoint(arrow)[0];

          if (b_iter->second < 0) {
            o = -(o+1);
          }
          if (o < 0) {
            const int size = pCone->size();

            if (o == -size) {
              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter) {
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  if (i == height-1) nCone->push_back(*c_iter);
                }
              }
            } else {
              const int numSkip = size + o;
              int       count   = 0;

              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter, ++count) {
                if (count < numSkip) continue;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  if (i == height-1) nCone->push_back(*c_iter);
                }
              }
              count = 0;
              for(typename sieve_type::traits::coneSequence::reverse_iterator c_iter = pCone->rbegin(); c_iter != pCone->rend(); ++c_iter, ++count) {
                if (count >= numSkip) break;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  if (i == height-1) nCone->push_back(*c_iter);
                }
              }
            }
          } else {
            if (o == 1) {
              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter) {
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  if (i == height-1) nCone->push_back(*c_iter);
                }
              }
            } else {
              const int numSkip = o-1;
              int       count   = 0;

              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter, ++count) {
                if (count < numSkip) continue;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  if (i == height-1) nCone->push_back(*c_iter);
                }
              }
              count = 0;
              for(typename sieve_type::traits::coneSequence::iterator c_iter = pCone->begin(); c_iter != pCone->end(); ++c_iter, ++count) {
                if (count >= numSkip) break;
                if (seen.find(*c_iter) == seen.end()) {
                  seen.insert(*c_iter);
                  cone->push_back(oriented_arrow_type(arrow_type(*c_iter, arrow.source), o));
                  if (i == height-1) nCone->push_back(*c_iter);
                }
              }
            }
          }
        }
      }
      return nCone;
    };
    static Obj<supportArray> star(const Obj<bundle_type>& bundle, const point_type& p) {
      typedef MinimalArrow<point_type, point_type> arrow_type;
      typedef typename ALE::array<arrow_type>      arrowArray;
      const Obj<sieve_type>&         sieve       = bundle->getSieve();
      const Obj<arrow_section_type>& orientation = bundle->getArrowSection("orientation");
      const int                      height      = bundle->height();
      Obj<arrowArray>                support     = new arrowArray();
      Obj<arrowArray>                cap         = new arrowArray();
      Obj<supportArray>              star        = new supportArray();
      supportSet                     seen;

      // Support is guarateed to be ordered correctly
      const Obj<typename sieve_type::traits::supportSequence>& initSupport = sieve->support(p);

      star->push_back(p);
      for(typename sieve_type::traits::supportSequence::iterator s_iter = initSupport->begin(); s_iter != initSupport->end(); ++s_iter) {
        support->push_back(arrow_type(p, *s_iter));
        star->push_back(*s_iter);
      }
      for(int i = 1; i < height; ++i) {
        Obj<arrowArray> tmp = support; support = cap; cap = tmp;

        support->clear();
        for(typename arrowArray::iterator b_iter = cap->begin(); b_iter != cap->end(); ++b_iter) {
          const Obj<typename sieve_type::traits::supportSequence>& pSupport = sieve->support(b_iter->target);
          const typename arrow_section_type::value_type            o        = orientation->restrictPoint(*b_iter)[0];

          if (o == -1) {
            for(typename sieve_type::traits::supportSequence::reverse_iterator s_iter = pSupport->rbegin(); s_iter != pSupport->rend(); ++s_iter) {
              if (seen.find(*s_iter) == seen.end()) {
                seen.insert(*s_iter);
                support->push_back(arrow_type(b_iter->target, *s_iter));
                star->push_back(*s_iter);
              }
            }
          } else {
            for(typename sieve_type::traits::supportSequence::iterator s_iter = pSupport->begin(); s_iter != pSupport->end(); ++s_iter) {
              if (seen.find(*s_iter) == seen.end()) {
                seen.insert(*s_iter);
                support->push_back(arrow_type(b_iter->target, *s_iter));
                star->push_back(*s_iter);
              }
            }
          }
        }
      }
      return star;
    };
    static Obj<supportArray> nSupport(const Obj<bundle_type>& bundle, const point_type& p, const int n) {
      typedef MinimalArrow<point_type, point_type> arrow_type;
      typedef typename ALE::array<arrow_type>      arrowArray;
      const Obj<sieve_type>&         sieve       = bundle->getSieve();
      const Obj<arrow_section_type>& orientation = bundle->getArrowSection("orientation");
      const int                      depth       = std::min(n, bundle->depth());
      Obj<arrowArray>                support     = new arrowArray();
      Obj<arrowArray>                cap         = new arrowArray();
      Obj<coneArray>                 nSupport    = new supportArray();
      supportSet                     seen;

      if (depth == 0) {
        nSupport->push_back(p);
        return nSupport;
      }

      // Cone is guarateed to be ordered correctly
      const Obj<typename sieve_type::traits::supportSequence>& initSupport = sieve->support(p);

      if (depth == 1) {
        for(typename sieve_type::traits::supportSequence::iterator s_iter = initSupport->begin(); s_iter != initSupport->end(); ++s_iter) {
          nSupport->push_back(*s_iter);
        }
        return nSupport;
      } else {
        for(typename sieve_type::traits::supportSequence::iterator s_iter = initSupport->begin(); s_iter != initSupport->end(); ++s_iter) {
          support->push_back(arrow_type(*s_iter, p));
        }
      }
      for(int i = 1; i < depth; ++i) {
        Obj<arrowArray> tmp = support; support = cap; cap = tmp;

        support->clear();
        for(typename arrowArray::iterator c_iter = cap->begin(); c_iter != cap->end(); ++c_iter) {
          const Obj<typename sieve_type::traits::supportSequence>& pSupport = sieve->support(c_iter->source);
          const typename arrow_section_type::value_type            o        = orientation->restrictPoint(*c_iter)[0];

          if (o == -1) {
            for(typename sieve_type::traits::supportSequence::reverse_iterator s_iter = pSupport->rbegin(); s_iter != pSupport->rend(); ++s_iter) {
              if (seen.find(*s_iter) == seen.end()) {
                seen.insert(*s_iter);
                support->push_back(arrow_type(*s_iter, c_iter->source));
                if (i == depth-1) nSupport->push_back(*s_iter);
              }
            }
          } else {
            for(typename sieve_type::traits::supportSequence::iterator s_iter = pSupport->begin(); s_iter != pSupport->end(); ++s_iter) {
              if (seen.find(*s_iter) == seen.end()) {
                seen.insert(*s_iter);
                support->push_back(arrow_type(*s_iter, c_iter->source));
                if (i == depth-1) nSupport->push_back(*s_iter);
              }
            }
          }
        }
      }
      return nSupport;
    };
    static Obj<sieve_type> Link(const Obj<bundle_type>& bundle, const point_type& p) {
      const Obj<sieve_type>&         link_sieve          = new sieve_type(bundle->comm(),  bundle->debug());
      const Obj<sieve_type>&         sieve               = bundle->getSieve();
      const int                      depth               = bundle->depth(p);
      const int                      interpolation_depth = bundle->height(p)+depth;
      Obj<coneArray>                 nSupport            = new supportArray();
      supportSet                     seen;
      //in either case, copy the closure of the cells surrounding the point to the new sieve
      static Obj<supportArray> neighboring_cells = sieve->nSupport(sieve->nCone(p, depth), interpolation_depth);
      static typename supportArray::iterator nc_iter = neighboring_cells->begin();
      static typename supportArray::iterator nc_iter_end = neighboring_cells->end();
      while (nc_iter != nc_iter_end) {
        addClosure(sieve, link_sieve, *nc_iter);
        nc_iter++;
      }
      if (interpolation_depth == 1) { //noninterpolated case
       //remove the point, allowing the copied closure to contract to a surface.

       if (depth != 0) {
         static Obj<coneArray> point_cone = sieve->cone(p);
         static typename coneArray::iterator pc_iter =  point_cone->begin();
         static typename coneArray::iterator pc_iter_end = point_cone->end();
         while (pc_iter != pc_iter_end) {
           link_sieve->removePoint(*pc_iter);
           pc_iter++;
         }
       }
       link_sieve->removePoint(p);

      } else { //interpolated case: remove the point, its closure, and the support of that closure, 

        static Obj<supportArray> surrounding_support = sieve->Star(sieve->nCone(p, depth));
        static typename supportArray::iterator ss_iter = surrounding_support->begin();
        static typename supportArray::iterator ss_iter_end = surrounding_support->end();
        while (ss_iter != ss_iter_end) {
          link_sieve->removePoint(*ss_iter);
          ss_iter++;
        }
        link_sieve->removePoint(p);
      }
      link_sieve->stratify();
      return link_sieve;
    };
  };
}

#endif