This file is indexed.

/usr/lib/petscdir/3.1/include/sieve/Sections.hh is in libpetsc3.1-dev 3.1.dfsg-11ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
#ifndef included_ALE_Sections_hh
#define included_ALE_Sections_hh

#ifndef  included_ALE_Numbering_hh
#include <Numbering.hh>
#endif

namespace ALE {
  template<typename Sieve_, typename Alloc_ = malloc_allocator<typename Sieve_::target_type> >
  class BaseSection : public ALE::ParallelObject {
  public:
    typedef Sieve_                                    sieve_type;
    typedef Alloc_                                    alloc_type;
    typedef int                                       value_type;
    typedef typename sieve_type::target_type          point_type;
    typedef typename sieve_type::traits::baseSequence chart_type;
  protected:
    Obj<sieve_type> _sieve;
    chart_type      _chart;
    int             _sizes[2];
  public:
    BaseSection(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve), _chart(*sieve->base()) {_sizes[0] = 1; _sizes[1] = 0;};
    ~BaseSection() {};
  public: // Verifiers
    bool hasPoint(const point_type& point) const {
      return this->_sieve->baseContains(point);
    };
  public:
    const chart_type& getChart() const {
      return this->_chart;
    };
    const int getFiberDimension(const point_type& p) const {
      return this->hasPoint(p) ? 1 : 0;
    };
    const value_type *restrictSpace() const {
      return this->_sizes;
    };
    const value_type *restrictPoint(const point_type& p) const {
      if (this->hasPoint(p)) return this->_sizes;
      return &this->_sizes[1];
    };
  };

  template<typename Sieve_, typename Alloc_ = malloc_allocator<int> >
  class ConeSizeSection : public ALE::ParallelObject {
  public:
    typedef Sieve_                              sieve_type;
    typedef Alloc_                              alloc_type;
    typedef int                                 value_type;
    typedef typename sieve_type::target_type    point_type;
    typedef BaseSection<sieve_type, alloc_type> atlas_type;
    typedef typename atlas_type::chart_type     chart_type;
    typedef typename alloc_type::template rebind<atlas_type>::other atlas_alloc_type;
    typedef typename atlas_alloc_type::pointer                      atlas_ptr;
  protected:
    Obj<sieve_type> _sieve;
    Obj<atlas_type> _atlas;
    int             _size;
  public:
    ConeSizeSection(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve) {
      atlas_ptr pAtlas = atlas_alloc_type().allocate(1);
      atlas_alloc_type().construct(pAtlas, atlas_type(sieve));
      this->_atlas     = Obj<atlas_type>(pAtlas, sizeof(atlas_type));
    };
    ~ConeSizeSection() {};
  public: // Verifiers
    bool hasPoint(const point_type& point) {
      return this->_atlas->hasPoint(point);
    };
  public: // Accessors
    const Obj<atlas_type>& getAtlas() {return this->_atlas;};
    void setAtlas(const Obj<atlas_type>& atlas) {this->_atlas = atlas;};
  public:
    const int getFiberDimension(const point_type& p) {
      return this->hasPoint(p) ? 1 : 0;
    };
    const value_type *restrictPoint(const point_type& p) {
      this->_size = this->_sieve->cone(p)->size();
      return &this->_size;
    };
  };

  template<typename Sieve_, typename Alloc_ = malloc_allocator<typename Sieve_::source_type> >
  class ConeSection : public ALE::ParallelObject {
  public:
    typedef Sieve_                                  sieve_type;
    typedef Alloc_                                  alloc_type;
    typedef typename sieve_type::target_type        point_type;
    typedef typename sieve_type::source_type        value_type;
    typedef ConeSizeSection<sieve_type, alloc_type> atlas_type;
    typedef typename atlas_type::chart_type         chart_type;
    typedef typename alloc_type::template rebind<atlas_type>::other atlas_alloc_type;
    typedef typename atlas_alloc_type::pointer                      atlas_ptr;
  protected:
    Obj<sieve_type> _sieve;
    Obj<atlas_type> _atlas;
    alloc_type      _allocator;
  public:
    ConeSection(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve) {
      atlas_ptr pAtlas = atlas_alloc_type(this->_allocator).allocate(1);
      atlas_alloc_type(this->_allocator).construct(pAtlas, atlas_type(sieve));
      this->_atlas     = Obj<atlas_type>(pAtlas, sizeof(atlas_type));
    };
    ~ConeSection() {};
  protected:
    value_type *getRawArray(const int size) {
      static value_type *array   = NULL;
      static int         maxSize = 0;

      if (size > maxSize) {
        const value_type dummy(0);

        if (array) {
          for(int i = 0; i < maxSize; ++i) {this->_allocator.destroy(array+i);}
          this->_allocator.deallocate(array, maxSize);
        }
        maxSize = size;
        array   = this->_allocator.allocate(maxSize);
        for(int i = 0; i < maxSize; ++i) {this->_allocator.construct(array+i, dummy);}
      };
      return array;
    };
  public: // Verifiers
    bool hasPoint(const point_type& point) {
      return this->_atlas->hasPoint(point);
    };
  public: // Accessors
    const Obj<atlas_type>& getAtlas() {return this->_atlas;};
    void setAtlas(const Obj<atlas_type>& atlas) {this->_atlas = atlas;};
  public: // Sizes and storage
    int getFiberDimension(const point_type& p) {
      return this->_atlas->restrictPoint(p)[0];
    };
  public: // Restriction and update
    const value_type *restrictPoint(const point_type& p) {
      const Obj<typename sieve_type::traits::coneSequence>& cone = this->_sieve->cone(p);
      value_type *array = this->getRawArray(cone->size());
      int         c     = 0;

      for(typename sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cone->end(); ++c_iter) {
        array[c++] = *c_iter;
      }
      return array;
    };
  };

  template<typename Sieve_, typename Alloc_ = malloc_allocator<typename Sieve_::target_type> >
  class BaseSectionV : public ALE::ParallelObject {
  public:
    typedef Sieve_                                    sieve_type;
    typedef Alloc_                                    alloc_type;
    typedef int                                       value_type;
    typedef typename sieve_type::target_type          point_type;
    //typedef typename sieve_type::traits::baseSequence chart_type;
    typedef int chart_type;
  protected:
    Obj<sieve_type> _sieve;
    //chart_type      _chart;
    int             _sizes[2];
  public:
    //BaseSectionV(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve), _chart(*sieve->base()) {_sizes[0] = 1; _sizes[1] = 0;};
    BaseSectionV(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve) {_sizes[0] = 1; _sizes[1] = 0;};
    ~BaseSectionV() {};
  public: // Verifiers
    bool hasPoint(const point_type& point) const {
      return this->_sieve->baseContains(point);
    };
  public:
    //const chart_type& getChart() const {
    //  return this->_chart;
    //};
    const int getFiberDimension(const point_type& p) const {
      return this->hasPoint(p) ? 1 : 0;
    };
    const value_type *restrictSpace() const {
      return this->_sizes;
    };
    const value_type *restrictPoint(const point_type& p) const {
      if (this->hasPoint(p)) return this->_sizes;
      return &this->_sizes[1];
    };
  };

  template<typename Sieve_, typename Alloc_ = malloc_allocator<int> >
  class ConeSizeSectionV : public ALE::ParallelObject {
  public:
    typedef Sieve_                               sieve_type;
    typedef Alloc_                               alloc_type;
    typedef int                                  value_type;
    typedef typename sieve_type::target_type     point_type;
    typedef BaseSectionV<sieve_type, alloc_type> atlas_type;
    typedef typename atlas_type::chart_type      chart_type;
    typedef typename alloc_type::template rebind<atlas_type>::other atlas_alloc_type;
    typedef typename atlas_alloc_type::pointer                      atlas_ptr;
  protected:
    Obj<sieve_type> _sieve;
    Obj<atlas_type> _atlas;
    int             _size;
  public:
    ConeSizeSectionV(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve) {
      atlas_ptr pAtlas = atlas_alloc_type().allocate(1);
      atlas_alloc_type().construct(pAtlas, atlas_type(sieve));
      this->_atlas     = Obj<atlas_type>(pAtlas, sizeof(atlas_type));
    };
    ~ConeSizeSectionV() {};
  public: // Verifiers
    bool hasPoint(const point_type& point) {
      return this->_atlas->hasPoint(point);
    };
  public: // Accessors
    const Obj<atlas_type>& getAtlas() {return this->_atlas;};
    void setAtlas(const Obj<atlas_type>& atlas) {this->_atlas = atlas;};
  public:
    const int getFiberDimension(const point_type& p) {
      return this->hasPoint(p) ? 1 : 0;
    };
    const value_type *restrictPoint(const point_type& p) {
      this->_size = this->_sieve->getConeSize(p);
      return &this->_size;
    };
  };

  template<typename Sieve_, typename Alloc_ = malloc_allocator<typename Sieve_::source_type> >
  class ConeSectionV : public ALE::ParallelObject {
  public:
    typedef Sieve_                                   sieve_type;
    typedef Alloc_                                   alloc_type;
    typedef typename sieve_type::target_type         point_type;
    typedef typename sieve_type::source_type         value_type;
    typedef ConeSizeSectionV<sieve_type, alloc_type> atlas_type;
    typedef typename atlas_type::chart_type          chart_type;
    typedef typename ISieveVisitor::PointRetriever<sieve_type> visitor_type;
    typedef typename alloc_type::template rebind<atlas_type>::other atlas_alloc_type;
    typedef typename atlas_alloc_type::pointer                      atlas_ptr;
  protected:
    Obj<sieve_type> _sieve;
    Obj<atlas_type> _atlas;
    visitor_type   *_cV;
    alloc_type      _allocator;
  public:
    ConeSectionV(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve) {
      atlas_ptr pAtlas = atlas_alloc_type(this->_allocator).allocate(1);
      atlas_alloc_type(this->_allocator).construct(pAtlas, atlas_type(sieve));
      this->_atlas     = Obj<atlas_type>(pAtlas, sizeof(atlas_type));
      this->_cV        = new visitor_type(std::max(0, sieve->getMaxConeSize()));
    };
    ~ConeSectionV() {
      delete this->_cV;
    };
  public: // Verifiers
    bool hasPoint(const point_type& point) {
      return this->_atlas->hasPoint(point);
    };
  public: // Accessors
    const Obj<atlas_type>& getAtlas() {return this->_atlas;};
    void setAtlas(const Obj<atlas_type>& atlas) {this->_atlas = atlas;};
  public: // Sizes and storage
    int getFiberDimension(const point_type& p) {
      return this->_atlas->restrictPoint(p)[0];
    };
  public: // Restriction and update
    const value_type *restrictPoint(const point_type& p) {
      this->_cV->clear();
      this->_sieve->cone(p, *this->_cV);
      return this->_cV->getPoints();
    };
  };

  template<typename Sieve_, typename Alloc_ = malloc_allocator<OrientedPoint<typename Sieve_::source_type> > >
  class OrientedConeSectionV : public ALE::ParallelObject {
  public:
    typedef Sieve_                                   sieve_type;
    typedef Alloc_                                   alloc_type;
    typedef typename sieve_type::target_type         point_type;
    typedef OrientedPoint<typename sieve_type::source_type> value_type;
    typedef typename alloc_type::template rebind<int>::other int_alloc_type;
    typedef ConeSizeSectionV<sieve_type, int_alloc_type> atlas_type;
    typedef typename atlas_type::chart_type          chart_type;
    typedef typename ISieveVisitor::PointRetriever<sieve_type> visitor_type;
    typedef typename alloc_type::template rebind<atlas_type>::other atlas_alloc_type;
    typedef typename atlas_alloc_type::pointer                      atlas_ptr;
  protected:
    Obj<sieve_type> _sieve;
    Obj<atlas_type> _atlas;
    visitor_type   *_cV;
    alloc_type      _allocator;
  public:
    OrientedConeSectionV(const Obj<sieve_type>& sieve) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve) {
      atlas_ptr pAtlas = atlas_alloc_type(this->_allocator).allocate(1);
      atlas_alloc_type(this->_allocator).construct(pAtlas, atlas_type(sieve));
      this->_atlas     = Obj<atlas_type>(pAtlas, sizeof(atlas_type));
      this->_cV        = new visitor_type(std::max(0, sieve->getMaxConeSize()));
    };
    ~OrientedConeSectionV() {
      delete this->_cV;
    };
  public: // Verifiers
    bool hasPoint(const point_type& point) {
      return this->_atlas->hasPoint(point);
    };
  public: // Accessors
    const Obj<atlas_type>& getAtlas() {return this->_atlas;};
    void setAtlas(const Obj<atlas_type>& atlas) {this->_atlas = atlas;};
  public: // Sizes and storage
    int getFiberDimension(const point_type& p) {
      return this->_atlas->restrictPoint(p)[0];
    };
  public: // Restriction and update
    const value_type *restrictPoint(const point_type& p) {
      this->_cV->clear();
      this->_sieve->orientedCone(p, *this->_cV);
      return (const value_type *) this->_cV->getOrientedPoints();
    };
  };

  template<typename Sieve_, typename Label_, typename Alloc_ = malloc_allocator<typename Sieve_::target_type> >
  class LabelBaseSection : public ALE::ParallelObject {
  public:
    typedef Sieve_                                    sieve_type;
    typedef Label_                                    label_type;
    typedef Alloc_                                    alloc_type;
    typedef int                                       value_type;
    typedef typename sieve_type::target_type          point_type;
    typedef typename sieve_type::traits::baseSequence chart_type;
  protected:
    Obj<sieve_type> _sieve;
    Obj<label_type> _label;
    chart_type      _chart;
    int             _sizes[2];
  public:
    LabelBaseSection(const Obj<sieve_type>& sieve, const Obj<label_type>& label) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve), _label(label), _chart(*sieve->base()) {_sizes[0] = 1; _sizes[1] = 0;};
    ~LabelBaseSection() {};
  public: // Verifiers
    bool hasPoint(const point_type& point) const {
      return this->_label->cone(point)->size() ? true : false;
    };
  public:
    const chart_type& getChart() const {
      return this->_chart;
    };
    const int getFiberDimension(const point_type& p) const {
      return this->hasPoint(p) ? 1 : 0;
    };
    const value_type *restrictSpace() const {
      return this->_sizes;
    };
    const value_type *restrictPoint(const point_type& p) const {
      if (this->hasPoint(p)) return this->_sizes;
      return &this->_sizes[1];
    };
  };

  template<typename Sieve_, typename Label_, typename Alloc_ = malloc_allocator<int>, typename Atlas_ = LabelBaseSection<Sieve_, Label_, Alloc_> >
  class LabelSection : public ALE::ParallelObject {
  public:
    typedef Sieve_                              sieve_type;
    typedef Label_                              label_type;
    typedef Alloc_                              alloc_type;
    typedef int                                 value_type;
    typedef typename sieve_type::target_type    point_type;
    typedef Atlas_                              atlas_type;
    typedef typename atlas_type::chart_type     chart_type;
    typedef typename alloc_type::template rebind<atlas_type>::other atlas_alloc_type;
    typedef typename atlas_alloc_type::pointer                      atlas_ptr;
  protected:
    Obj<sieve_type> _sieve;
    Obj<label_type> _label;
    Obj<atlas_type> _atlas;
    int             _size;
    int             _value;
  public:
    LabelSection(const Obj<sieve_type>& sieve, const Obj<label_type>& label) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve), _label(label) {
      atlas_ptr pAtlas = atlas_alloc_type().allocate(1);
      atlas_alloc_type().construct(pAtlas, atlas_type(sieve, label));
      this->_atlas     = Obj<atlas_type>(pAtlas, sizeof(atlas_type));
    };
    ~LabelSection() {};
  public: // Verifiers
    bool hasPoint(const point_type& point) {
      return this->_atlas->hasPoint(point);
    };
  public: // Accessors
    const Obj<atlas_type>& getAtlas() {return this->_atlas;};
    void setAtlas(const Obj<atlas_type>& atlas) {this->_atlas = atlas;};
  public:
    const int getFiberDimension(const point_type& p) {
      return this->hasPoint(p) ? 1 : 0;
    };
    const value_type *restrictPoint(const point_type& p) {
      this->_value = *this->_label->cone(p)->begin();
      return &this->_value;
    };
  };

  template<typename Sieve_, typename Label_, typename Alloc_ = malloc_allocator<typename Sieve_::target_type> >
  class LabelBaseSectionV : public ALE::ParallelObject {
  public:
    typedef Sieve_                                    sieve_type;
    typedef Label_                                    label_type;
    typedef Alloc_                                    alloc_type;
    typedef int                                       value_type;
    typedef typename sieve_type::target_type          point_type;
    //typedef typename sieve_type::traits::baseSequence chart_type;
    typedef int                                       chart_type;
  protected:
    Obj<sieve_type> _sieve;
    Obj<label_type> _label;
    //chart_type      _chart;
    int             _sizes[2];
  public:
    //LabelBaseSectionV(const Obj<sieve_type>& sieve, const Obj<label_type>& label) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve), _label(label), _chart(*sieve->base()) {_sizes[0] = 1; _sizes[1] = 0;};
    LabelBaseSectionV(const Obj<sieve_type>& sieve, const Obj<label_type>& label) : ParallelObject(sieve->comm(), sieve->debug()), _sieve(sieve), _label(label) {_sizes[0] = 1; _sizes[1] = 0;};
    ~LabelBaseSectionV() {};
  public: // Verifiers
    bool hasPoint(const point_type& point) const {
      return this->_label->cone(point)->size() ? true : false;
    };
  public:
    //const chart_type& getChart() const {
    //  return this->_chart;
    //};
    const int getFiberDimension(const point_type& p) const {
      return this->hasPoint(p) ? 1 : 0;
    };
    const value_type *restrictSpace() const {
      return this->_sizes;
    };
    const value_type *restrictPoint(const point_type& p) const {
      if (this->hasPoint(p)) return this->_sizes;
      return &this->_sizes[1];
    };
  };

  namespace New {
    // This section takes an existing section, and reports instead the fiber dimensions as values
    template<typename Section_>
    class SizeSection : public ALE::ParallelObject {
    public:
      typedef Section_                          section_type;
      typedef typename section_type::point_type point_type;
      typedef int                               value_type;
    protected:
      Obj<section_type> _section;
      value_type        _size;
    public:
      SizeSection(const Obj<section_type>& section) : ParallelObject(MPI_COMM_SELF, section->debug()), _section(section) {};
      virtual ~SizeSection() {};
    public:
      bool hasPoint(const point_type& point) {
        return this->_section->hasPoint(point);
      };
      const value_type *restrictPoint(const point_type& p) {
        this->_size = this->_section->getFiberDimension(p);
        return &this->_size;
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        this->_section->view(name, comm);
      };
    };

    // This section reports as values the size of the partition associated with the partition point
    template<typename Bundle_, typename Marker_>
    class PartitionSizeSection : public ALE::ParallelObject {
    public:
      typedef Bundle_                          bundle_type;
      typedef typename bundle_type::sieve_type sieve_type;
      typedef typename bundle_type::point_type point_type;
      typedef Marker_                          marker_type;
      typedef int                              value_type;
      typedef std::map<marker_type, int>       sizes_type;
    protected:
      sizes_type _sizes;
      int        _height;
      void _init(const Obj<bundle_type>& bundle, const int numElements, const marker_type partition[]) {
        const Obj<typename bundle_type::label_sequence>& cells      = bundle->heightStratum(this->_height);
        const Obj<typename bundle_type::numbering_type>& cNumbering = bundle->getFactory()->getLocalNumbering(bundle, bundle->depth() - this->_height);
        std::map<marker_type, std::set<point_type> >     points;

        if (numElements != (int) cells->size()) {
          throw ALE::Exception("Partition size does not match the number of elements");
        }
        for(typename bundle_type::label_sequence::iterator e_iter = cells->begin(); e_iter != cells->end(); ++e_iter) {
          typedef ALE::SieveAlg<bundle_type> sieve_alg_type;
          const Obj<typename sieve_alg_type::coneArray>& closure = sieve_alg_type::closure(bundle, *e_iter);
          const int idx = cNumbering->getIndex(*e_iter);

          points[partition[idx]].insert(closure->begin(), closure->end());
          if (this->_height > 0) {
            const Obj<typename sieve_alg_type::supportArray>& star = sieve_alg_type::star(bundle, *e_iter);

            points[partition[idx]].insert(star->begin(), star->end());
          }
        }
        for(typename std::map<marker_type, std::set<point_type> >::const_iterator p_iter = points.begin(); p_iter != points.end(); ++p_iter) {
          this->_sizes[p_iter->first] = p_iter->second.size();
        }
      };
    public:
      PartitionSizeSection(const Obj<bundle_type>& bundle, const int elementHeight, const int numElements, const marker_type *partition) : ParallelObject(MPI_COMM_SELF, bundle->debug()), _height(elementHeight) {
        this->_init(bundle, numElements, partition);
      };
      virtual ~PartitionSizeSection() {};
    public:
      bool hasPoint(const point_type& point) {return true;};
      const value_type *restrictPoint(const point_type& p) {
        return &this->_sizes[p];
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        ostringstream txt;
        int rank;

        if (comm == MPI_COMM_NULL) {
          comm = this->comm();
          rank = this->commRank();
        } else {
          MPI_Comm_rank(comm, &rank);
        }
        if (name == "") {
          if(rank == 0) {
            txt << "viewing a PartitionSizeSection" << std::endl;
          }
        } else {
          if(rank == 0) {
            txt << "viewing PartitionSizeSection '" << name << "'" << std::endl;
          }
        }
        for(typename sizes_type::const_iterator s_iter = this->_sizes.begin(); s_iter != this->_sizes.end(); ++s_iter) {
          const marker_type& partition = s_iter->first;
          const value_type   size      = s_iter->second;

          txt << "[" << this->commRank() << "]: Partition " << partition << " size " << size << std::endl;
        }
        PetscSynchronizedPrintf(comm, txt.str().c_str());
        PetscSynchronizedFlush(comm);
      };
    };

    template<typename Point_>
    class PartitionDomain {
    public:
      typedef Point_ point_type;
    public:
      PartitionDomain() {};
      ~PartitionDomain() {};
    public:
      int count(const point_type& point) const {return 1;};
    };

    // This section returns the points in each partition
    template<typename Bundle_, typename Marker_>
    class PartitionSection : public ALE::ParallelObject {
    public:
      typedef Bundle_                            bundle_type;
      typedef typename bundle_type::sieve_type   sieve_type;
      typedef typename bundle_type::point_type   point_type;
      typedef Marker_                            marker_type;
      typedef int                                value_type;
      typedef std::map<marker_type, point_type*> points_type;
      typedef PartitionDomain<point_type>        chart_type;
    protected:
      points_type _points;
      chart_type  _domain;
      int         _height;
      void _init(const Obj<bundle_type>& bundle, const int numElements, const marker_type partition[]) {
        // Should check for patch 0
        const Obj<typename bundle_type::label_sequence>& cells      = bundle->heightStratum(this->_height);
        const Obj<typename bundle_type::numbering_type>& cNumbering = bundle->getFactory()->getLocalNumbering(bundle, bundle->depth() - this->_height);
        std::map<marker_type, std::set<point_type> >     points;
        std::map<marker_type, int>                       offsets;

        if (numElements != (int) cells->size()) {
          throw ALE::Exception("Partition size does not match the number of elements");
        }
        for(typename bundle_type::label_sequence::iterator e_iter = cells->begin(); e_iter != cells->end(); ++e_iter) {
          typedef ALE::SieveAlg<bundle_type> sieve_alg_type;
          const Obj<typename sieve_alg_type::coneArray>& closure = sieve_alg_type::closure(bundle, *e_iter);
          const int idx = cNumbering->getIndex(*e_iter);

          points[partition[idx]].insert(closure->begin(), closure->end());
          if (this->_height > 0) {
            const Obj<typename sieve_alg_type::supportArray>& star = sieve_alg_type::star(bundle, *e_iter);

            points[partition[idx]].insert(star->begin(), star->end());
          }
        }
        for(typename std::map<marker_type, std::set<point_type> >::const_iterator p_iter = points.begin(); p_iter != points.end(); ++p_iter) {
          this->_points[p_iter->first] = new point_type[p_iter->second.size()];
          offsets[p_iter->first] = 0;
          for(typename std::set<point_type>::const_iterator s_iter = p_iter->second.begin(); s_iter != p_iter->second.end(); ++s_iter) {
            this->_points[p_iter->first][offsets[p_iter->first]++] = *s_iter;
          }
        }
        for(typename std::map<marker_type, std::set<point_type> >::const_iterator p_iter = points.begin(); p_iter != points.end(); ++p_iter) {
          if (offsets[p_iter->first] != (int) p_iter->second.size()) {
            ostringstream txt;
            txt << "Invalid offset for partition " << p_iter->first << ": " << offsets[p_iter->first] << " should be " << p_iter->second.size();
            throw ALE::Exception(txt.str().c_str());
          }
        }
      };
    public:
      PartitionSection(const Obj<bundle_type>& bundle, const int elementHeight, const int numElements, const marker_type *partition) : ParallelObject(MPI_COMM_SELF, bundle->debug()), _height(elementHeight) {
        this->_init(bundle, numElements, partition);
      };
      virtual ~PartitionSection() {
        for(typename points_type::iterator p_iter = this->_points.begin(); p_iter != this->_points.end(); ++p_iter) {
          delete [] p_iter->second;
        }
      };
    public:
      const chart_type& getChart() {return this->_domain;};
      bool hasPoint(const point_type& point) {return true;};
      const value_type *restrictPoint(const point_type& p) {
        return this->_points[p];
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        ostringstream txt;
        int rank;

        if (comm == MPI_COMM_NULL) {
          comm = this->comm();
          rank = this->commRank();
        } else {
          MPI_Comm_rank(comm, &rank);
        }
        if (name == "") {
          if(rank == 0) {
            txt << "viewing a PartitionSection" << std::endl;
          }
        } else {
          if(rank == 0) {
            txt << "viewing PartitionSection '" << name << "'" << std::endl;
          }
        }
        for(typename points_type::const_iterator p_iter = this->_points.begin(); p_iter != this->_points.end(); ++p_iter) {
          const marker_type& partition  = p_iter->first;
          //const point_type *points = p_iter->second;

          txt << "[" << this->commRank() << "]: Partition " << partition << std::endl;
        }
        if (this->_points.size() == 0) {
          txt << "[" << this->commRank() << "]: empty" << std::endl;
        }
        PetscSynchronizedPrintf(comm, txt.str().c_str());
        PetscSynchronizedFlush(comm);
      };
    };

    template<typename Bundle_, typename Sieve_>
    class ConeSizeSection : public ALE::ParallelObject {
    public:
      typedef ConeSizeSection<Bundle_, Sieve_> section_type;
      typedef int                              patch_type;
      typedef Bundle_                          bundle_type;
      typedef Sieve_                           sieve_type;
      typedef typename bundle_type::point_type point_type;
      typedef int                              value_type;
    protected:
      Obj<bundle_type> _bundle;
      Obj<sieve_type>  _sieve;
      value_type       _size;
      int              _minHeight;
      Obj<section_type> _section;
    public:
      ConeSizeSection(const Obj<bundle_type>& bundle, const Obj<sieve_type>& sieve, int minimumHeight = 0) : ParallelObject(MPI_COMM_SELF, sieve->debug()), _bundle(bundle), _sieve(sieve), _minHeight(minimumHeight) {
        this->_section = this;
        this->_section.addRef();
      };
      virtual ~ConeSizeSection() {};
    public: // Verifiers
      bool hasPoint(const point_type& point) {return true;};
    public: // Restriction
      const value_type *restrictPoint(const point_type& p) {
        if ((this->_minHeight == 0) || (this->_bundle->height(p) >= this->_minHeight)) {
          this->_size = this->_sieve->cone(p)->size();
        } else {
          this->_size = 0;
        }
        return &this->_size;
      };
    public: // Adapter
      const Obj<section_type>& getSection(const patch_type& patch) {
        return this->_section;
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        ostringstream txt;
        int rank;

        if (comm == MPI_COMM_NULL) {
          comm = this->comm();
          rank = this->commRank();
        } else {
          MPI_Comm_rank(comm, &rank);
        }
        if (name == "") {
          if(rank == 0) {
            txt << "viewing a ConeSizeSection" << std::endl;
          }
        } else {
          if(rank == 0) {
            txt << "viewing ConeSizeSection '" << name << "'" << std::endl;
          }
        }
        PetscSynchronizedPrintf(comm, txt.str().c_str());
        PetscSynchronizedFlush(comm);
      };
    };

    template<typename Sieve_>
    class ConeSection : public ALE::ParallelObject {
    public:
      typedef Sieve_                           sieve_type;
      typedef typename sieve_type::target_type point_type;
      typedef typename sieve_type::source_type value_type;
      typedef PartitionDomain<sieve_type>      chart_type;
    protected:
      Obj<sieve_type> _sieve;
      int             _coneSize;
      value_type     *_cone;
      chart_type      _domain;
      void ensureCone(const int size) {
        if (size > this->_coneSize) {
          if (this->_cone) delete [] this->_cone;
          this->_coneSize = size;
          this->_cone     = new value_type[this->_coneSize];
        }
      };
    public:
      ConeSection(const Obj<sieve_type>& sieve) : ParallelObject(MPI_COMM_SELF, sieve->debug()), _sieve(sieve), _coneSize(-1), _cone(NULL) {};
      virtual ~ConeSection() {if (this->_cone) delete [] this->_cone;};
    public:
      const chart_type& getChart() {return this->_domain;};
      bool hasPoint(const point_type& point) {return true;};
      const value_type *restrictPoint(const point_type& p) {
        const Obj<typename sieve_type::traits::coneSequence>& cone = this->_sieve->cone(p);
        int c = 0;

        this->ensureCone(cone->size());
        for(typename sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cone->end(); ++c_iter) {
          this->_cone[c++] = *c_iter;
        }
        return this->_cone;
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        ostringstream txt;
        int rank;

        if (comm == MPI_COMM_NULL) {
          comm = this->comm();
          rank = this->commRank();
        } else {
          MPI_Comm_rank(comm, &rank);
        }
        if (name == "") {
          if(rank == 0) {
            txt << "viewing a ConeSection" << std::endl;
          }
        } else {
          if(rank == 0) {
            txt << "viewing ConeSection '" << name << "'" << std::endl;
          }
        }
        PetscSynchronizedPrintf(comm, txt.str().c_str());
        PetscSynchronizedFlush(comm);
      };
    };

    template<typename Bundle_, typename Sieve_>
    class SupportSizeSection : public ALE::ParallelObject {
    public:
      typedef Bundle_                          bundle_type;
      typedef Sieve_                           sieve_type;
      typedef typename sieve_type::source_type point_type;
      typedef typename sieve_type::target_type value_type;
    protected:
      Obj<bundle_type> _bundle;
      Obj<sieve_type>  _sieve;
      value_type       _size;
      int              _minDepth;
    public:
      SupportSizeSection(const Obj<bundle_type>& bundle, const Obj<sieve_type>& sieve, int minimumDepth = 0) : ParallelObject(MPI_COMM_SELF, bundle->debug()), _bundle(bundle), _sieve(sieve), _minDepth(minimumDepth) {};
      virtual ~SupportSizeSection() {};
    public:
      bool hasPoint(const point_type& point) {return true;};
      const value_type *restrictPoint(const point_type& p) {
        if ((this->_minDepth == 0) || (this->_bundle->depth(p) >= this->_minDepth)) {
          this->_size = this->_sieve->support(p)->size();
        } else {
          this->_size = 0;
        }
        return &this->_size;
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        ostringstream txt;
        int rank;

        if (comm == MPI_COMM_NULL) {
          comm = this->comm();
          rank = this->commRank();
        } else {
          MPI_Comm_rank(comm, &rank);
        }
        if (name == "") {
          if(rank == 0) {
            txt << "viewing a SupportSizeSection" << std::endl;
          }
        } else {
          if(rank == 0) {
            txt << "viewing SupportSizeSection '" << name << "'" << std::endl;
          }
        }
        PetscSynchronizedPrintf(comm, txt.str().c_str());
        PetscSynchronizedFlush(comm);
      };
    };

    template<typename Sieve_>
    class SupportSection : public ALE::ParallelObject {
    public:
      typedef Sieve_                           sieve_type;
      typedef typename sieve_type::source_type point_type;
      typedef typename sieve_type::target_type value_type;
      typedef PartitionDomain<sieve_type>      chart_type;
    protected:
      Obj<sieve_type> _sieve;
      int             _supportSize;
      value_type     *_support;
      chart_type      _domain;
      void ensureSupport(const int size) {
        if (size > this->_supportSize) {
          if (this->_support) delete [] this->_support;
          this->_supportSize = size;
          this->_support     = new value_type[this->_supportSize];
        }
      };
    public:
      SupportSection(const Obj<sieve_type>& sieve) : ParallelObject(MPI_COMM_SELF, sieve->debug()), _sieve(sieve), _supportSize(-1), _support(NULL) {};
      virtual ~SupportSection() {if (this->_support) delete [] this->_support;};
    public:
      const chart_type& getChart() {return this->_domain;};
      bool hasPoint(const point_type& point) {return true;};
      const value_type *restrictPoint(const point_type& p) {
        const Obj<typename sieve_type::traits::supportSequence>& support = this->_sieve->support(p);
        int s = 0;

        this->ensureSupport(support->size());
        for(typename sieve_type::traits::supportSequence::iterator s_iter = support->begin(); s_iter != support->end(); ++s_iter) {
          this->_support[s++] = *s_iter;
        }
        return this->_support;
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        ostringstream txt;
        int rank;

        if (comm == MPI_COMM_NULL) {
          comm = this->comm();
          rank = this->commRank();
        } else {
          MPI_Comm_rank(comm, &rank);
        }
        if (name == "") {
          if(rank == 0) {
            txt << "viewing a SupportSection" << std::endl;
          }
        } else {
          if(rank == 0) {
            txt << "viewing SupportSection '" << name << "'" << std::endl;
          }
        }
        PetscSynchronizedPrintf(comm, txt.str().c_str());
        PetscSynchronizedFlush(comm);
      };
    };

    template<typename Sieve_, typename Section_>
    class ArrowSection : public ALE::ParallelObject {
    public:
      typedef Sieve_                            sieve_type;
      typedef Section_                          section_type;
      typedef typename sieve_type::target_type  point_type;
      typedef typename section_type::point_type arrow_type;
      typedef typename section_type::value_type value_type;
    protected:
      Obj<sieve_type>   _sieve;
      Obj<section_type> _section;
      int               _coneSize;
      value_type       *_cone;
      void ensureCone(const int size) {
        if (size > this->_coneSize) {
          if (this->_cone) delete [] this->_cone;
          this->_coneSize = size;
          this->_cone     = new value_type[this->_coneSize];
        }
      };
    public:
      ArrowSection(const Obj<sieve_type>& sieve, const Obj<section_type>& section) : ParallelObject(MPI_COMM_SELF, sieve->debug()), _sieve(sieve), _section(section), _coneSize(-1), _cone(NULL) {};
      virtual ~ArrowSection() {if (this->_cone) delete [] this->_cone;};
    public:
      bool hasPoint(const point_type& point) {return this->_sieve->baseContains(point);};
      const value_type *restrictPoint(const point_type& p) {
        const Obj<typename sieve_type::traits::coneSequence>& cone = this->_sieve->cone(p);
        int c = -1;

        this->ensureCone(cone->size());
        for(typename sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cone->end(); ++c_iter) {
          this->_cone[++c] = this->_section->restrictPoint(arrow_type(*c_iter, p))[0];
        }
        return this->_cone;
      };
    public:
      void view(const std::string& name, MPI_Comm comm = MPI_COMM_NULL) const {
        ostringstream txt;
        int rank;

        if (comm == MPI_COMM_NULL) {
          comm = this->comm();
          rank = this->commRank();
        } else {
          MPI_Comm_rank(comm, &rank);
        }
        if (name == "") {
          if(rank == 0) {
            txt << "viewing a ConeSection" << std::endl;
          }
        } else {
          if(rank == 0) {
            txt << "viewing ConeSection '" << name << "'" << std::endl;
          }
        }
        PetscSynchronizedPrintf(comm, txt.str().c_str());
        PetscSynchronizedFlush(comm);
      };
    };
  }
}
#endif