This file is indexed.

/usr/lib/petscdir/3.1/include/sieve/Partitioner.hh is in libpetsc3.1-dev 3.1.dfsg-11ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
#ifndef included_ALE_Partitioner_hh
#define included_ALE_Partitioner_hh

#ifndef  included_ALE_Completion_hh
#include <Completion.hh>
#endif

#ifdef PETSC_HAVE_ZOLTAN
#include <zoltan.h>

extern "C" {
  // Inputs
  extern int  nvtxs_Zoltan;   // The number of vertices
  extern int  nhedges_Zoltan; // The number of hyperedges
  extern int *eptr_Zoltan;    // The offsets of each hyperedge
  extern int *eind_Zoltan;    // The vertices in each hyperedge, indexed by eptr

  int getNumVertices_Zoltan(void *, int *);

  void getLocalElements_Zoltan(void *, int, int, ZOLTAN_ID_PTR, ZOLTAN_ID_PTR, int, float *, int *);

  void getHgSizes_Zoltan(void *, int *, int *, int *, int *);

  void getHg_Zoltan(void *, int, int, int, int, ZOLTAN_ID_PTR, int *, ZOLTAN_ID_PTR, int *);
}

#endif

#ifdef PETSC_HAVE_CHACO
#ifdef PETSC_HAVE_UNISTD_H
#include <unistd.h>
#endif
/* Chaco does not have an include file */
extern "C" {
  extern int interface(int nvtxs, int *start, int *adjacency, int *vwgts,
                       float *ewgts, float *x, float *y, float *z, char *outassignname,
                       char *outfilename, short *assignment, int architecture, int ndims_tot,
                       int mesh_dims[3], double *goal, int global_method, int local_method,
                       int rqi_flag, int vmax, int ndims, double eigtol, long seed);

  extern int FREE_GRAPH;
}
#endif
#ifdef PETSC_HAVE_PARMETIS
extern "C" {
  #include <parmetis.h>
  extern void METIS_PartGraphKway(int *, int *, int *, int *, int *, int *, int *, int *, int *, int *, int *);
}
#endif
#ifdef PETSC_HAVE_HMETIS
extern "C" {
  extern void HMETIS_PartKway(int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts, int nparts, int ubfactor, int *options, int *part, int *edgeCut);
}
#endif

namespace ALE {
#if 1
#ifdef PETSC_HAVE_CHACO
  namespace Chaco {
    template<typename Alloc_ = malloc_allocator<short int> >
    class Partitioner {
    public:
      typedef short int part_type;
      typedef Alloc_    alloc_type;
      enum {DEFAULT_METHOD = 1, INERTIAL_METHOD = 3};
    protected:
      const int  logSize;
      char      *msgLog;
      int        fd_stdout, fd_pipe[2];
      alloc_type _allocator;
    public:
      Partitioner(): logSize(10000) {};
      ~Partitioner() {};
    protected:
      // Chaco outputs to stdout. We redirect this to a buffer.
      // TODO: check error codes for UNIX calls
      void startStdoutRedirect() {
#ifdef PETSC_HAVE_UNISTD_H
        this->fd_stdout = dup(1);
        pipe(this->fd_pipe);
        close(1);
        dup2(this->fd_pipe[1], 1);
#endif
      };
      void stopStdoutRedirect() {
#ifdef PETSC_HAVE_UNISTD_H
        int count;

        fflush(stdout);
        this->msgLog = new char[this->logSize];
        count = read(this->fd_pipe[0], this->msgLog, (this->logSize-1)*sizeof(char));
        if (count < 0) count = 0;
        this->msgLog[count] = 0;
        close(1);
        dup2(this->fd_stdout, 1);
        close(this->fd_stdout);
        close(this->fd_pipe[0]);
        close(this->fd_pipe[1]);
        //std::cout << this->msgLog << std::endl;
        delete [] this->msgLog;
#endif
      };
    public:
      static bool zeroBase() {return false;}
      // This method returns the partition section mapping sieve points (here cells) to partitions
      //   start:     start of edge list for each vertex
      //   adjacency: adj[start[v]] is edge list data for vertex v
      //   partition: this section is over the partitions and takes points as values
      // TODO: Read global and local methods from options
      template<typename Section, typename MeshManager>
      void partition(const int numVertices, const int start[], const int adjacency[], const Obj<Section>& partition, const MeshManager& manager) {
        FREE_GRAPH = 0;                         /* Do not let Chaco free my memory */
        int nvtxs = numVertices;                /* number of vertices in full graph */
        int *vwgts = NULL;                      /* weights for all vertices */
        float *ewgts = NULL;                    /* weights for all edges */
        float *x = NULL, *y = NULL, *z = NULL;  /* coordinates for inertial method */
        char *outassignname = NULL;             /*  name of assignment output file */
        char *outfilename = NULL;               /* output file name */
        int architecture = 1;                   /* 0 => hypercube, d => d-dimensional mesh */
        int ndims_tot = 0;                      /* total number of cube dimensions to divide */
        int mesh_dims[3];                       /* dimensions of mesh of processors */
        double *goal = NULL;                    /* desired set sizes for each set */
        int global_method = 1;                  /* global partitioning algorithm */
        int local_method = 1;                   /* local partitioning algorithm */
        int rqi_flag = 0;                       /* should I use RQI/Symmlq eigensolver? */
        int vmax = 200;                         /* how many vertices to coarsen down to? */
        int ndims = 1;                          /* number of eigenvectors (2^d sets) */
        double eigtol = 0.001;                  /* tolerance on eigenvectors */
        long seed = 123636512;                  /* for random graph mutations */
        int maxSize = 0;

	    if (global_method == INERTIAL_METHOD) {manager.createCellCoordinates(nvtxs, &x, &y, &z);}
        mesh_dims[0] = partition->commSize(); mesh_dims[1] = 1; mesh_dims[2] = 1;
        part_type *assignment = this->_allocator.allocate(nvtxs);
        for(int i = 0; i < nvtxs; ++i) {this->_allocator.construct(assignment+i, 0);}

        this->startStdoutRedirect();
        interface(nvtxs, (int *) start, (int *) adjacency, vwgts, ewgts, x, y, z, outassignname, outfilename,
                  assignment, architecture, ndims_tot, mesh_dims, goal, global_method, local_method, rqi_flag,
                  vmax, ndims, eigtol, seed);
        this->stopStdoutRedirect();

        for(int v = 0; v < nvtxs; ++v) {partition->addFiberDimension(assignment[v], 1);}
        partition->allocatePoint();
        for(int p = 0; p < partition->commSize(); ++p) {
          maxSize = std::max(maxSize, partition->getFiberDimension(p));
        }
        typename Section::value_type *values = new typename Section::value_type[maxSize];

        for(int p = 0; p < partition->commSize(); ++p) {
          int k = 0;

          for(int v = 0; v < nvtxs; ++v) {
            if (assignment[v] == p) values[k++] = manager.getCell(v);
          }
          if (k != partition->getFiberDimension(p)) throw ALE::Exception("Invalid partition");
          partition->updatePoint(p, values);
        }
        delete [] values;

	    if (global_method == INERTIAL_METHOD) {manager.destroyCellCoordinates(nvtxs, &x, &y, &z);}
        for(int i = 0; i < nvtxs; ++i) {this->_allocator.destroy(assignment+i);}
        this->_allocator.deallocate(assignment, nvtxs);
      };
    };
  }
#endif
#ifdef PETSC_HAVE_PARMETIS
  namespace ParMetis {
    template<typename Alloc_ = malloc_allocator<int> >
    class Partitioner {
    public:
      typedef int    part_type;
      typedef Alloc_ alloc_type;
    protected:
      alloc_type _allocator;
    public:
      static bool zeroBase() {return true;}
      // This method returns the partition section mapping sieve points (here cells) to partitions
      //   start:     start of edge list for each vertex
      //   adjacency: adj[start[v]] is edge list data for vertex v
      //   partition: this section is over the partitions and takes points as values
      // TODO: Read parameters from options
      template<typename Section, typename MeshManager>
      void partition(const int numVertices, const int start[], const int adjacency[], const Obj<Section>& partition, const MeshManager& manager) {
        //static part_type *partitionSieve(const Obj<bundle_type>& bundle, const int dim) {
        int    nvtxs      = numVertices; // The number of vertices in full graph
        int   *vtxdist;                  // Distribution of vertices across processes
        int   *xadj       = const_cast<int*>(start);       // Start of edge list for each vertex
        int   *adjncy     = const_cast<int*>(adjacency);   // Edge lists for all vertices
        int   *vwgt       = NULL;        // Vertex weights
        int   *adjwgt     = NULL;        // Edge weights
        int    wgtflag    = 0;           // Indicates which weights are present
        int    numflag    = 0;           // Indicates initial offset (0 or 1)
        int    ncon       = 1;           // The number of weights per vertex
        int    nparts     = partition->commSize(); // The number of partitions
        float *tpwgts;                   // The fraction of vertex weights assigned to each partition
        float *ubvec;                    // The balance intolerance for vertex weights
        int    options[5];               // Options
        int    maxSize    = 0;
        // Outputs
        int        edgeCut;              // The number of edges cut by the partition
        part_type *assignment;

        options[0] = 0; // Use all defaults
        // Calculate vertex distribution
        //   Not sure this still works in parallel
        vtxdist    = new int[nparts+1];
        vtxdist[0] = 0;
        MPI_Allgather(&nvtxs, 1, MPI_INT, &vtxdist[1], 1, MPI_INT, partition->comm());
        for(int p = 2; p <= nparts; ++p) {
          vtxdist[p] += vtxdist[p-1];
        }
        // Calculate weights
        tpwgts     = new float[ncon*nparts];
        for(int p = 0; p < nparts; ++p) {
          tpwgts[p] = 1.0/nparts;
        }
        ubvec      = new float[ncon];
        ubvec[0]   = 1.05;

        assignment = this->_allocator.allocate(nvtxs);
        for(int i = 0; i < nvtxs; ++i) {this->_allocator.construct(assignment+i, 0);}

        if (partition->commSize() == 1) {
          PetscMemzero(assignment, nvtxs * sizeof(part_type));
        } else {
          if (partition->debug() && nvtxs) {
            for(int p = 0; p <= nvtxs; ++p) {
              std::cout << "["<<partition->commRank()<<"]xadj["<<p<<"] = " << xadj[p] << std::endl;
            }
            for(int i = 0; i < xadj[nvtxs]; ++i) {
              std::cout << "["<<partition->commRank()<<"]adjncy["<<i<<"] = " << adjncy[i] << std::endl;
            }
          }
          if (vtxdist[1] == vtxdist[nparts]) {
            if (partition->commRank() == 0) {
              METIS_PartGraphKway(&nvtxs, xadj, adjncy, vwgt, adjwgt, &wgtflag, &numflag, &nparts, options, &edgeCut, assignment);
              if (partition->debug()) {std::cout << "Metis: edgecut is " << edgeCut << std::endl;}
            }
          } else {
            MPI_Comm comm = partition->comm();

            ParMETIS_V3_PartKway(vtxdist, xadj, adjncy, vwgt, adjwgt, &wgtflag, &numflag, &ncon, &nparts, tpwgts, ubvec, options, &edgeCut, assignment, &comm);
            if (partition->debug()) {std::cout << "ParMetis: edgecut is " << edgeCut << std::endl;}
          }
        }
        delete [] vtxdist;
        delete [] tpwgts;
        delete [] ubvec;

        for(int v = 0; v < nvtxs; ++v) {partition->addFiberDimension(assignment[v], 1);}
        partition->allocatePoint();
        for(int p = 0; p < partition->commSize(); ++p) {
          maxSize = std::max(maxSize, partition->getFiberDimension(p));
        }
        typename Section::value_type *values = new typename Section::value_type[maxSize];

        for(int p = 0; p < partition->commSize(); ++p) {
          int k = 0;

          for(int v = 0; v < nvtxs; ++v) {
            if (assignment[v] == p) values[k++] = manager.getCell(v);
          }
          if (k != partition->getFiberDimension(p)) throw ALE::Exception("Invalid partition");
          partition->updatePoint(p, values);
        }
        delete [] values;

        for(int i = 0; i < nvtxs; ++i) {this->_allocator.destroy(assignment+i);}
        this->_allocator.deallocate(assignment, nvtxs);
      };
    };
  };
#endif
  namespace Simple {
    template<typename Alloc_ = malloc_allocator<short int> >
    class Partitioner {
    public:
      typedef int    part_type;
      typedef Alloc_ alloc_type;
    protected:
      alloc_type _allocator;
    public:
      Partitioner() {};
      ~Partitioner() {};
    public:
      static bool zeroBase() {return true;}
      template<typename Section, typename MeshManager>
      void partition(const int numVertices, const int start[], const int adjacency[], const Obj<Section>& partition, const MeshManager& manager) {
        const int numProcs = partition->commSize();
        const int rank     = partition->commRank();
        int       maxSize  = 0;

        for(int p = 0; p < numProcs; ++p) {
          partition->setFiberDimension(p, numVertices/numProcs + ((numVertices % numProcs) > rank));
          maxSize = std::max(maxSize, partition->getFiberDimension(p));
        }
        partition->allocatePoint();
        typename Section::value_type *values = new typename Section::value_type[maxSize];

        for(int p = 0; p < partition->commSize(); ++p) {
          const int start = p*(numVertices/numProcs)     + p*((numVertices % numProcs) > p+1);
          const int end   = (p+1)*(numVertices/numProcs) + (p+1)*((numVertices % numProcs) > p+2);
          int       k     = 0;

          for(int v = start; v < end; ++v, ++k) {
            values[k] = manager.getCell(v);
          }
          if (k != partition->getFiberDimension(p)) throw ALE::Exception("Invalid partition");
          partition->updatePoint(p, values);
        }
        delete [] values;
      };
    };
  }
#ifdef PETSC_HAVE_CHACO
  template<typename GraphPartitioner = ALE::Chaco::Partitioner<>, typename Alloc_ = malloc_allocator<int> >
#elif defined(PETSC_HAVE_PARMETIS)
  template<typename GraphPartitioner = ALE::ParMetis::Partitioner<>, typename Alloc_ = malloc_allocator<int> >
#else
  template<typename GraphPartitioner = ALE::Simple::Partitioner<>, typename Alloc_ = malloc_allocator<int> >
#endif
  class Partitioner {
  public:
    typedef Alloc_                               alloc_type;
    typedef GraphPartitioner                     graph_partitioner_type;
    typedef typename GraphPartitioner::part_type part_type;
    template<typename Mesh>
    class MeshManager {
    public:
      typedef typename Mesh::point_type point_type;
    protected:
      const Obj<Mesh>& mesh;
      bool             simpleCellNumbering;
      point_type      *cells;
    protected:
      void createCells(const int height) {
        const Obj<typename Mesh::label_sequence>&     mcells   = mesh->heightStratum(height);
        const typename Mesh::label_sequence::iterator cEnd     = mcells->end();
        const int                                     numCells = mcells->size();
        int                                           c        = 0;

        this->cells               = NULL;
        this->simpleCellNumbering = true;
        for(typename Mesh::label_sequence::iterator c_iter = mcells->begin(); c_iter != cEnd; ++c_iter, ++c) {
          if (*c_iter != c) {
            this->simpleCellNumbering = false;
            break;
          }
        }
        if (!this->simpleCellNumbering) {
          this->cells = new point_type[numCells];
          c           = 0;
          for(typename Mesh::label_sequence::iterator c_iter = mcells->begin(); c_iter != cEnd; ++c_iter, ++c) {
            this->cells[c] = *c_iter;
          }
        }
      };
    public:
      MeshManager(const Obj<Mesh>& mesh, const int height = 0): mesh(mesh) {
        this->createCells(height);
      };
      ~MeshManager() {
        if (this->cells) {delete [] this->cells;}
      };
    public:
      template<typename Float>
      void createCellCoordinates(const int numVertices, Float *X[], Float *Y[], Float *Z[]) const {
        const Obj<typename Mesh::real_section_type>& coordinates = mesh->getRealSection("coordinates");
        const int dim = mesh->getDimension();
        typedef typename alloc_type::template rebind<Float>::other float_alloc_type;
        Float *x = float_alloc_type().allocate(numVertices*3);
        for(int i = 0; i < numVertices*3; ++i) {float_alloc_type().construct(x+i, 0.0);}
        Float *y = x+numVertices;
        Float *z = y+numVertices;
        Float *vCoords[3];

        vCoords[0] = x; vCoords[1] = y; vCoords[2] = z;
        const Obj<typename Mesh::label_sequence>& cells = mesh->heightStratum(0);
        const int corners = mesh->size(coordinates, *(cells->begin()))/dim;
        int       c       = 0;

        for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter !=cells->end(); ++c_iter, ++c) {
          const double *coords = mesh->restrictClosure(coordinates, *c_iter);

          for(int d = 0; d < dim; ++d) {
            vCoords[d][c] = 0.0;
          }
          for(int v = 0; v < corners; ++v) {
            for(int d = 0; d < dim; ++d) {
              vCoords[d][c] += coords[v*dim+d];
            }
          }
          for(int d = 0; d < dim; ++d) {
            vCoords[d][c] /= corners;
          }
        }
        *X = x;
        *Y = y;
        *Z = z;
      };
      template<typename Float>
      void destroyCellCoordinates(const int numVertices, Float *X[], Float *Y[], Float *Z[]) const {
        typedef typename alloc_type::template rebind<Float>::other float_alloc_type;
        Float *x = *X;

        for(int i = 0; i < numVertices*3; ++i) {float_alloc_type().destroy(x+i);}
        float_alloc_type().deallocate(x, numVertices*3);
      };
      point_type getCell(const int cellNumber) const {
        if (this->simpleCellNumbering) {
          return cellNumber;
        }
        return this->cells[cellNumber];
      };
    };
    template<typename Sieve>
    class OffsetVisitor {
      const Sieve& sieve;
      const Sieve& overlapSieve;
      int         *offsets;
    public:
      OffsetVisitor(const Sieve& s, const Sieve& ovS, int off[]) : sieve(s), overlapSieve(ovS), offsets(off) {};
      void visitPoint(const typename Sieve::point_type& point) {};
      void visitArrow(const typename Sieve::arrow_type& arrow) {
        const typename Sieve::point_type cell   = arrow.target;
        const typename Sieve::point_type face   = arrow.source;
        const int                        size   = this->sieve.getSupportSize(face);
        const int                        ovSize = this->overlapSieve.getSupportSize(face);

        if (size == 2) {
          offsets[cell+1]++;
        } else if ((size == 1) && (ovSize == 1)) {
          offsets[cell+1]++;
        }
      };
    };
    template<typename Sieve>
    class AdjVisitor {
    protected:
      typename Sieve::point_type cell;
      int                       *adjacency;
      const int                  cellOffset;
      int                        offset;
    public:
      AdjVisitor(int adj[], const bool zeroBase) : adjacency(adj), cellOffset(zeroBase ? 0 : 1), offset(0) {};
      void visitPoint(const typename Sieve::point_type& point) {};
      void visitArrow(const typename Sieve::arrow_type& arrow) {
        const int neighbor = arrow.target;

        if (neighbor != this->cell) {
          //std::cout << "Adding dual edge from " << cell << " to " << neighbor << std::endl;
          this->adjacency[this->offset++] = neighbor + this->cellOffset;
        }
      };
    public:
      void setCell(const typename Sieve::point_type cell) {this->cell = cell;};
      int  getOffset() {return this->offset;}
    };
    template<typename Sieve>
    class MeetVisitor {
    public:
      typedef std::set<typename Sieve::point_type> neighbors_type;
    protected:
      const Sieve& sieve;
      const int numCells;
      const int faceVertices;
      typename Sieve::point_type newCell;
      neighbors_type *neighborCells;
      typename ISieveVisitor::PointRetriever<Sieve> *pR;
      typename Sieve::point_type cell;
      std::map<typename Sieve::point_type, typename Sieve::point_type> newCells;
    public:
      MeetVisitor(const Sieve& s, const int n, const int fV) : sieve(s), numCells(n), faceVertices(fV), newCell(n) {
        this->neighborCells = new std::set<typename Sieve::point_type>[numCells];
        this->pR            = new typename ISieveVisitor::PointRetriever<Sieve>(this->sieve.getMaxConeSize());
      };
      ~MeetVisitor() {delete [] this->neighborCells; delete this->pR;};
      void visitArrow(const typename Sieve::arrow_type& arrow) {};
      void visitPoint(const typename Sieve::point_type& point) {
        const typename Sieve::point_type& neighbor = point;

        if (this->cell == neighbor) return;
        this->pR->clear();
        this->sieve.meet(this->cell, neighbor, *this->pR);
        if (this->pR->getSize() == (size_t) this->faceVertices) {
          if ((this->cell < numCells) && (neighbor < numCells)) {
            this->neighborCells[this->cell].insert(neighbor);
          } else {
            typename Sieve::point_type e = this->cell, n = neighbor;

            if (this->cell >= numCells) {
              if (this->newCells.find(cell) == this->newCells.end()) this->newCells[cell] = --newCell;
              e = this->newCells[cell];
            }
            if (neighbor >= numCells) {
              if (this->newCells.find(neighbor) == this->newCells.end()) this->newCells[neighbor] = --newCell;
              n = this->newCells[neighbor];
            }
            this->neighborCells[e].insert(n);
          }
        }
      };
    public:
      void setCell(const typename Sieve::point_type& c) {this->cell = c;};
      const neighbors_type *getNeighbors() {return this->neighborCells;};
    };
  public: // Creating overlaps
    // Create a partition point overlap for distribution
    //   This is the default overlap which comes from distributing a serial mesh on process 0
    template<typename SendOverlap, typename RecvOverlap>
    static void createDistributionPartOverlap(const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap) {
      const int rank = sendOverlap->commRank();
      const int size = sendOverlap->commSize();

      if (rank == 0) {
        for(int p = 1; p < size; p++) {
          // The arrow is from local partition point p (source) to remote partition point p (color) on rank p (target)
          sendOverlap->addCone(p, p, p);
        }
      }
      if (rank != 0) {
        // The arrow is from remote partition point rank (color) on rank 0 (source) to local partition point rank (target)
        recvOverlap->addCone(0, rank, rank);
      }
    };
    // Create a mesh point overlap for distribution
    //   A local numbering is created for the remote points
    //   This is the default overlap which comes from distributing a serial mesh on process 0
    template<typename Section, typename RecvPartOverlap, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static void createDistributionMeshOverlap(const Obj<Section>& partition, const Obj<RecvPartOverlap>& recvPartOverlap, Renumbering& renumbering, const Obj<Section>& overlapPartition, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap) {
      const typename Section::chart_type& chart = partition->getChart();

      for(typename Section::chart_type::const_iterator p_iter = chart.begin(); p_iter != chart.end(); ++p_iter) {
        if (*p_iter == sendOverlap->commRank()) continue;
        const typename Section::value_type *points     = partition->restrictPoint(*p_iter);
        const int                           numPoints  = partition->getFiberDimension(*p_iter);
        
        for(int i = 0; i < numPoints; ++i) {
          // Notice here that we do not know the local renumbering (but we do not use it)
          sendOverlap->addArrow(points[i], *p_iter, points[i]);
        }
      }
      if (sendOverlap->debug()) {sendOverlap->view("Send mesh overlap");}
      const Obj<typename RecvPartOverlap::traits::baseSequence> rPoints    = recvPartOverlap->base();

      for(typename RecvPartOverlap::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
        const Obj<typename RecvPartOverlap::coneSequence>& ranks           = recvPartOverlap->cone(*p_iter);
        //const typename Section::point_type&                localPartPoint  = *p_iter;
        const typename Section::point_type                 rank            = *ranks->begin();
        const typename Section::point_type&                remotePartPoint = ranks->begin().color();
        const typename Section::value_type                *points          = overlapPartition->restrictPoint(remotePartPoint);
        const int                                          numPoints       = overlapPartition->getFiberDimension(remotePartPoint);

        for(int i = 0; i < numPoints; ++i) {
          recvOverlap->addArrow(rank, renumbering[points[i]], points[i]);
        }
      }
      if (recvOverlap->debug()) {recvOverlap->view("Receive mesh overlap");}
    };
    // Create a partition point overlap from a partition
    //   The intention is to create an overlap which enables exchange of redistribution information
    template<typename Section, typename SendOverlap, typename RecvOverlap>
    static void createPartitionPartOverlap(const Obj<Section>& partition, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap) {
      const typename Section::chart_type& chart      = partition->getChart();
      const int                           rank       = partition->commRank();
      const int                           size       = partition->commSize();
      int                                *adj        = new int[size];
      int                                *recvCounts = new int[size];
      int                                 numNeighbors;

      for(int p = 0; p < size; ++p) {
        adj[p]        = 0;
        recvCounts[p] = 1;
      }
      for(typename Section::chart_type::const_iterator p_iter = chart.begin(); p_iter != chart->end(); ++p_iter) {
        const typename Section::value_type& p = partition->restrictPoint(*p_iter)[0];
        // The arrow is from local partition point p (source) to remote partition point p (color) on rank p (target)
        sendOverlap->addCone(p, p, p);
        adj[p] = 1;
      }
      MPI_Reduce_Scatter(adj, &numNeighbors, recvCounts, size, MPI_INT, MPI_SUM, partition->comm());
      MPI_Request *recvRequests = new MPI_Request[numNeighbors];
      int          dummy        = 0;

      // TODO: Get a unique tag
      for(int n = 0; n < numNeighbors; ++n) {
        MPI_Irecv(&dummy, 1, MPI_INT, MPI_ANY_SOURCE, 1, partition->comm(), &recvRequests[n]);
      }
      const Obj<typename SendOverlap::traits::baseSequence>      ranks        = sendOverlap->base();
      const typename SendOverlap::traits::baseSequence::iterator rEnd         = ranks->end();
      MPI_Request                                               *sendRequests = new MPI_Request[ranks->size()];
      int                                                        s            = 0;

      for(typename SendOverlap::traits::baseSequence::iterator r_iter = ranks->begin(); r_iter != rEnd; ++r_iter, ++s) {
        MPI_Isend(&dummy, 1, MPI_INT, *r_iter, 1, partition->comm(), &sendRequests[s]);
      }
      for(int n = 0; n < numNeighbors; ++n) {
        MPI_Status status;
        int        idx;

        MPI_Waitany(numNeighbors, recvRequests, &idx, &status);
        // The arrow is from remote partition point rank (color) on rank p (source) to local partition point rank (target)
        recvOverlap->addCone(status.MPI_SOURCE, rank, rank);
      }
      MPI_Waitall(ranks->size(), sendRequests, MPI_STATUSES_IGNORE);
      delete [] sendRequests;
      delete [] recvRequests;
      delete [] adj;
      delete [] recvCounts;
    };
  public: // Building CSR meshes
    // This produces the dual graph (each cell is a vertex and each face is an edge)
    //   numbering:   A contiguous numbering of the cells (not yet included)
    //   numVertices: The number of vertices in the graph (cells in the mesh)
    //   adjacency:   The vertices adjacent to each vertex (cells adjacent to each mesh cell)
    // - We allow an exception to contiguous numbering.
    //   If the cell id > numElements, we assign a new number starting at
    //     the top and going downward. I know these might not match up with
    //     the iterator order, but we can fix it later.
    template<typename Mesh>
    static void buildDualCSR(const Obj<Mesh>& mesh, int *numVertices, int **offsets, int **adjacency, const bool zeroBase = true) {
      const Obj<typename Mesh::sieve_type>&         sieve        = mesh->getSieve();
      const Obj<typename Mesh::label_sequence>&     cells        = mesh->heightStratum(0);
      const typename Mesh::label_sequence::iterator cEnd         = cells->end();
      const int                                     numCells     = cells->size();
      int                                           newCell      = numCells;
      Obj<typename Mesh::sieve_type>                overlapSieve = new typename Mesh::sieve_type(mesh->comm(), mesh->debug());
      int                                           offset       = 0;
      const int                                     cellOffset   = zeroBase ? 0 : 1;
      const int                                     dim          = mesh->getDimension();
      std::map<typename Mesh::point_type, typename Mesh::point_type> newCells;

      // TODO: This is necessary for parallel partitioning
      //completion::scatterSupports(sieve, overlapSieve, mesh->getSendOverlap(), mesh->getRecvOverlap(), mesh);
      if (numCells == 0) {
        *numVertices = 0;
        *offsets     = NULL;
        *adjacency   = NULL;
        return;
      }
      int *off = alloc_type().allocate(numCells+1);
      int *adj;
      for(int i = 0; i < numCells+1; ++i) {alloc_type().construct(off+i, 0);}
      if (mesh->depth() == dim) {
        int c = 1;

        for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter, ++c) {
          const Obj<typename Mesh::sieve_type::traits::coneSequence>&     faces = sieve->cone(*c_iter);
          const typename Mesh::sieve_type::traits::coneSequence::iterator fEnd  = faces->end();

          off[c] = off[c-1];
          for(typename Mesh::sieve_type::traits::coneSequence::iterator f_iter = faces->begin(); f_iter != fEnd; ++f_iter) {
            if (sieve->support(*f_iter)->size() == 2) {
              off[c]++;
            } else if ((sieve->support(*f_iter)->size() == 1) && (overlapSieve->support(*f_iter)->size() == 1)) {
              off[c]++;
            }
          }
        }
        adj = alloc_type().allocate(off[numCells]);
        for(int i = 0; i < off[numCells]; ++i) {alloc_type().construct(adj+i, 0);}
        for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter) {
          const Obj<typename Mesh::sieve_type::traits::coneSequence>&     faces = sieve->cone(*c_iter);
          const typename Mesh::sieve_type::traits::coneSequence::iterator fEnd  = faces->end();

          for(typename Mesh::sieve_type::traits::coneSequence::iterator f_iter = faces->begin(); f_iter != fEnd; ++f_iter) {
            const Obj<typename Mesh::sieve_type::traits::supportSequence>&     neighbors = sieve->support(*f_iter);
            const typename Mesh::sieve_type::traits::supportSequence::iterator nEnd      = neighbors->end();

            for(typename Mesh::sieve_type::traits::supportSequence::iterator n_iter = neighbors->begin(); n_iter != nEnd; ++n_iter) {
              if (*n_iter != *c_iter) adj[offset++] = *n_iter + cellOffset;
            }
            const Obj<typename Mesh::sieve_type::traits::supportSequence>&     oNeighbors = overlapSieve->support(*f_iter);
            const typename Mesh::sieve_type::traits::supportSequence::iterator onEnd      = oNeighbors->end();

            for(typename Mesh::sieve_type::traits::supportSequence::iterator n_iter = oNeighbors->begin(); n_iter != onEnd; ++n_iter) {
              adj[offset++] = *n_iter + cellOffset;
            }
          }
        }
      } else if (mesh->depth() == 1) {
        std::set<typename Mesh::point_type> *neighborCells = new std::set<typename Mesh::point_type>[numCells];
        const int                            corners       = sieve->cone(*cells->begin())->size();
        int                                  faceVertices;

        if (corners == dim+1) {
          faceVertices = dim;
        } else if ((dim == 2) && (corners == 4)) {
          faceVertices = 2;
        } else if ((dim == 3) && (corners == 8)) {
          faceVertices = 4;
        } else {
          throw ALE::Exception("Could not determine number of face vertices");
        }
        for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cells->end(); ++c_iter) {
            const Obj<typename Mesh::sieve_type::traits::coneSequence>&     vertices = sieve->cone(*c_iter);
            const typename Mesh::sieve_type::traits::coneSequence::iterator vEnd     = vertices->end();

            for(typename Mesh::sieve_type::traits::coneSequence::iterator v_iter = vertices->begin(); v_iter != vEnd; ++v_iter) {
              const Obj<typename Mesh::sieve_type::traits::supportSequence>&     neighbors = sieve->support(*v_iter);
              const typename Mesh::sieve_type::traits::supportSequence::iterator nEnd      = neighbors->end();

              for(typename Mesh::sieve_type::traits::supportSequence::iterator n_iter = neighbors->begin(); n_iter != nEnd; ++n_iter) {
                if (*c_iter == *n_iter) continue;
                if ((int) sieve->nMeet(*c_iter, *n_iter, 1)->size() == faceVertices) {
                  if ((*c_iter < numCells) && (*n_iter < numCells)) {
                    neighborCells[*c_iter].insert(*n_iter);
                  } else {
                    typename Mesh::point_type e = *c_iter, n = *n_iter;

                    if (*c_iter >= numCells) {
                      if (newCells.find(*c_iter) == newCells.end()) newCells[*c_iter] = --newCell;
                      e = newCells[*c_iter];
                    }
                    if (*n_iter >= numCells) {
                      if (newCells.find(*n_iter) == newCells.end()) newCells[*n_iter] = --newCell;
                      n = newCells[*n_iter];
                    }
                    neighborCells[e].insert(n);
                  }
                }
              }
            }
          }
          off[0] = 0;
          for(int c = 1; c <= numCells; c++) {
            off[c] = neighborCells[c-1].size() + off[c-1];
          }
          adj = alloc_type().allocate(off[numCells]);
          for(int i = 0; i < off[numCells]; ++i) {alloc_type().construct(adj+i, 0);}
          for(int c = 0; c < numCells; c++) {
            for(typename std::set<typename Mesh::point_type>::iterator n_iter = neighborCells[c].begin(); n_iter != neighborCells[c].end(); ++n_iter) {
              adj[offset++] = *n_iter + cellOffset;
            }
          }
          delete [] neighborCells;
      } else {
        throw ALE::Exception("Dual creation not defined for partially interpolated meshes");
      }
      if (offset != off[numCells]) {
        ostringstream msg;
        msg << "ERROR: Total number of neighbors " << offset << " does not match the offset array " << off[numCells];
        throw ALE::Exception(msg.str().c_str());
      }
      *numVertices = numCells;
      *offsets     = off;
      *adjacency   = adj;
    };
    template<typename Mesh>
    static void buildDualCSRV(const Obj<Mesh>& mesh, int *numVertices, int **offsets, int **adjacency, const bool zeroBase = true) {
      const Obj<typename Mesh::sieve_type>&         sieve        = mesh->getSieve();
      const Obj<typename Mesh::label_sequence>&     cells        = mesh->heightStratum(0);
      const typename Mesh::label_sequence::iterator cEnd         = cells->end();
      const int                                     numCells     = cells->size();
      Obj<typename Mesh::sieve_type>                overlapSieve = new typename Mesh::sieve_type(mesh->comm(), mesh->debug());
      int                                           offset       = 0;
      const int                                     cellOffset   = zeroBase ? 0 : 1;
      const int                                     dim          = mesh->getDimension();
      std::map<typename Mesh::point_type, typename Mesh::point_type> newCells;

      // TODO: This is necessary for parallel partitioning
      //completion::scatterSupports(sieve, overlapSieve, mesh->getSendOverlap(), mesh->getRecvOverlap(), mesh);
      overlapSieve->setChart(sieve->getChart());
      overlapSieve->allocate();
      if (numCells == 0) {
        *numVertices = 0;
        *offsets     = NULL;
        *adjacency   = NULL;
        return;
      }
      int *off = alloc_type().allocate(numCells+1);
      int *adj;
      for(int i = 0; i < numCells+1; ++i) {alloc_type().construct(off+i, 0);}
      if (mesh->depth() == dim) {
        OffsetVisitor<typename Mesh::sieve_type> oV(*sieve, *overlapSieve, off);

        for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter) {
          sieve->cone(*c_iter, oV);
        }
        for(int p = 1; p <= numCells; ++p) {
          off[p] = off[p] + off[p-1];
        }
        adj = alloc_type().allocate(off[numCells]);
        for(int i = 0; i < off[numCells]; ++i) {alloc_type().construct(adj+i, 0);}
        AdjVisitor<typename Mesh::sieve_type> aV(adj, zeroBase);
        ISieveVisitor::SupportVisitor<typename Mesh::sieve_type, AdjVisitor<typename Mesh::sieve_type> > sV(*sieve, aV);
        ISieveVisitor::SupportVisitor<typename Mesh::sieve_type, AdjVisitor<typename Mesh::sieve_type> > ovSV(*overlapSieve, aV);

        for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter) {
          aV.setCell(*c_iter);
          sieve->cone(*c_iter, sV);
          sieve->cone(*c_iter, ovSV);
        }
        offset = aV.getOffset();
      } else if (mesh->depth() == 1) {
        typedef MeetVisitor<typename Mesh::sieve_type>    mv_type;
        typedef typename ISieveVisitor::SupportVisitor<typename Mesh::sieve_type, mv_type> sv_type;
        const int corners = sieve->getConeSize(*cells->begin());
        int       faceVertices;

        if (corners == dim+1) {
          faceVertices = dim;
        } else if ((dim == 2) && (corners == 4)) {
          faceVertices = 2;
        } else if ((dim == 3) && (corners == 8)) {
          faceVertices = 4;
        } else {
          throw ALE::Exception("Could not determine number of face vertices");
        }
        mv_type mV(*sieve, numCells, faceVertices);
        sv_type sV(*sieve, mV);

        for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cells->end(); ++c_iter) {
          mV.setCell(*c_iter);
          sieve->cone(*c_iter, sV);
        }
        const typename mv_type::neighbors_type *neighborCells = mV.getNeighbors();

        off[0] = 0;
        for(int c = 1; c <= numCells; c++) {
          off[c] = neighborCells[c-1].size() + off[c-1];
        }
        adj = alloc_type().allocate(off[numCells]);
        for(int i = 0; i < off[numCells]; ++i) {alloc_type().construct(adj+i, 0);}
        for(int c = 0; c < numCells; c++) {
          for(typename mv_type::neighbors_type::const_iterator n_iter = neighborCells[c].begin(); n_iter != neighborCells[c].end(); ++n_iter) {
            //std::cout << "Adding dual edge from " << c << " to " << *n_iter << std::endl;
            adj[offset++] = *n_iter + cellOffset;
          }
        }
      } else {
        throw ALE::Exception("Dual creation not defined for partially interpolated meshes");
      }
      if (offset != off[numCells]) {
        ostringstream msg;
        msg << "ERROR: Total number of neighbors " << offset << " does not match the offset array " << off[numCells];
        throw ALE::Exception(msg.str().c_str());
      }
      *numVertices = numCells;
      *offsets     = off;
      *adjacency   = adj;
    };
    // This produces a hypergraph (each face is a vertex and each cell is a hyperedge)
    //   numbering: A contiguous numbering of the faces
    //   numEdges:  The number of edges in the hypergraph
    //   adjacency: The vertices in each edge
    template<typename Mesh>
    static void buildFaceDualCSR(const Obj<Mesh>& mesh, const Obj<typename Mesh::numbering_type>& numbering, int *numEdges, int **offsets, int **adjacency, const bool zeroBase = true) {
      const Obj<typename Mesh::sieve_type>&         sieve = mesh->getSieve();
      const Obj<typename Mesh::label_sequence>&     cells = mesh->heightStratum(0);
      const typename Mesh::label_sequence::iterator cEnd  = cells->end();
      const int faceOffset = zeroBase ? 0 : 1;
      int       numCells = cells->size();
      int       c        = 1;

      if (mesh->depth() != mesh->getDimension()) {throw ALE::Exception("Not yet implemented for non-interpolated meshes");}
      int *off = alloc_type().allocate(numCells+1);
      for(int i = 0; i < numCells+1; ++i) {alloc_type().construct(off+i, 0);}
      for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter, ++c) {
        off[c] = sieve->cone(*c_iter)->size() + off[c-1];
      }
      int *adj = alloc_type().allocate(off[numCells]);
      for(int i = 0; i < off[numCells]; ++i) {alloc_type().construct(adj+i, 0);}
      int  offset = 0;
      for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter) {
        const Obj<typename Mesh::sieve_type::traits::coneSequence>&     faces = sieve->cone(*c_iter);
        const typename Mesh::sieve_type::traits::coneSequence::iterator fEnd  = faces->end();

        for(typename Mesh::sieve_type::traits::coneSequence::iterator f_iter = faces->begin(); f_iter != fEnd; ++f_iter, ++offset) {
          adj[offset] = numbering->getIndex(*f_iter) + faceOffset;
        }
      }
      if (offset != off[numCells]) {
        ostringstream msg;
        msg << "ERROR: Total number of neighbors " << offset << " does not match the offset array " << off[numCells];
        throw ALE::Exception(msg.str().c_str());
      }
      *numEdges  = numCells;
      *offsets   = off;
      *adjacency = adj;
    };
    template<typename Mesh>
    static void buildFaceDualCSRV(const Obj<Mesh>& mesh, const Obj<typename Mesh::numbering_type>& numbering, int *numEdges, int **offsets, int **adjacency, const bool zeroBase = true) {
      throw ALE::Exception("Not implemented");
    };
    static void destroyCSR(int numPoints, int *offsets, int *adjacency) {
      if (adjacency) {
        for(int i = 0; i < offsets[numPoints]; ++i) {alloc_type().destroy(adjacency+i);}
        alloc_type().deallocate(adjacency, offsets[numPoints]);
      }
      if (offsets) {
        for(int i = 0; i < numPoints+1; ++i) {alloc_type().destroy(offsets+i);}
        alloc_type().deallocate(offsets, numPoints+1);
      }
    };
    template<typename OldSection, typename Partition, typename Renumbering, typename NewSection>
    static void createLocalSection(const Obj<OldSection>& oldSection, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<NewSection>& newSection) {
      const typename Partition::value_type *points    = partition->restrictPoint(oldSection->commRank());
      const int                             numPoints = partition->getFiberDimension(oldSection->commRank());

      for(int p = 0; p < numPoints; ++p) {
        if (oldSection->hasPoint(points[p])) {
          newSection->setFiberDimension(renumbering[points[p]], oldSection->getFiberDimension(points[p]));
        }
      }
      if (numPoints) {newSection->allocatePoint();}
      for(int p = 0; p < numPoints; ++p) {
        if (oldSection->hasPoint(points[p])) {
          newSection->updatePointAll(renumbering[points[p]], oldSection->restrictPoint(points[p]));
        }
      }
    };
    // Specialize to ArrowSection
    template<typename OldSection, typename Partition, typename Renumbering>
    static void createLocalSection(const Obj<OldSection>& oldSection, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<UniformSection<MinimalArrow<int,int>,int> >& newSection) {
      typedef UniformSection<MinimalArrow<int,int>,int> NewSection;
      const typename Partition::value_type    *points    = partition->restrictPoint(oldSection->commRank());
      const int                                numPoints = partition->getFiberDimension(oldSection->commRank());
      const typename OldSection::chart_type&   oldChart  = oldSection->getChart();
      std::set<typename Partition::value_type> myPoints;

      for(int p = 0; p < numPoints; ++p) {
        myPoints.insert(points[p]);
      }
      for(typename OldSection::chart_type::const_iterator c_iter = oldChart.begin(); c_iter != oldChart.end(); ++c_iter) {
        if (myPoints.count(c_iter->source) && myPoints.count(c_iter->target)) {
          newSection->setFiberDimension(typename OldSection::point_type(renumbering[c_iter->source], renumbering[c_iter->target]), oldSection->getFiberDimension(*c_iter));
        }
      }
      if (oldChart.size()) {newSection->allocatePoint();}
      for(typename OldSection::chart_type::const_iterator c_iter = oldChart.begin(); c_iter != oldChart.end(); ++c_iter) {
        if (myPoints.count(c_iter->source) && myPoints.count(c_iter->target)) {
          const typename OldSection::value_type *values = oldSection->restrictPoint(*c_iter);

          newSection->updatePointAll(typename OldSection::point_type(renumbering[c_iter->source], renumbering[c_iter->target]), values);
        }
      }
    };
    template<typename Sifter, typename Section, typename Renumbering>
    static void createLocalSifter(const Obj<Sifter>& sifter, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Sifter>& localSifter) {
      const typename Section::value_type *points    = partition->restrictPoint(sifter->commRank());
      const int                           numPoints = partition->getFiberDimension(sifter->commRank());

      for(int p = 0; p < numPoints; ++p) {
        const Obj<typename Sifter::traits::coneSequence>&     cone = sifter->cone(points[p]);
        const typename Sifter::traits::coneSequence::iterator cEnd = cone->end();

        for(typename Sifter::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cEnd; ++c_iter) {
          localSifter->addArrow(*c_iter, renumbering[points[p]]);
        }
      }
    };
    template<typename Sieve, typename Section, typename Renumbering>
    static void createLocalSieve(const Obj<Sieve>& sieve, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Sieve>& localSieve, const int height = 0) {
      const typename Section::value_type *points    = partition->restrictPoint(sieve->commRank());
      const int                           numPoints = partition->getFiberDimension(sieve->commRank());

      for(int p = 0; p < numPoints; ++p) {
        Obj<typename Sieve::coneSet> current = new typename Sieve::coneSet();
        Obj<typename Sieve::coneSet> next    = new typename Sieve::coneSet();
        Obj<typename Sieve::coneSet> tmp;

        current->insert(points[p]);
        while(current->size()) {
          for(typename Sieve::coneSet::const_iterator p_iter = current->begin(); p_iter != current->end(); ++p_iter) {
            const Obj<typename Sieve::traits::coneSequence>& cone = sieve->cone(*p_iter);
            
            for(typename Sieve::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cone->end(); ++c_iter) {
              localSieve->addArrow(renumbering[*c_iter], renumbering[*p_iter], c_iter.color());
              next->insert(*c_iter);
            }
          }
          tmp = current; current = next; next = tmp;
          next->clear();
        }
        if (height) {
          current->insert(points[p]);
          while(current->size()) {
            for(typename Sieve::coneSet::const_iterator p_iter = current->begin(); p_iter != current->end(); ++p_iter) {
              const Obj<typename Sieve::traits::supportSequence>& support = sieve->support(*p_iter);
            
              for(typename Sieve::traits::supportSequence::iterator s_iter = support->begin(); s_iter != support->end(); ++s_iter) {
                localSieve->addArrow(renumbering[*p_iter], renumbering[*s_iter], s_iter.color());
                next->insert(*s_iter);
              }
            }
            tmp = current; current = next; next = tmp;
            next->clear();
          }
        }
      }
    };
    template<typename Mesh, typename Section, typename Renumbering>
    static void createLocalMesh(const Obj<Mesh>& mesh, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Mesh>& localMesh, const int height = 0) {
      const Obj<typename Mesh::sieve_type>& sieve      = mesh->getSieve();
      const Obj<typename Mesh::sieve_type>& localSieve = localMesh->getSieve();

      createLocalSieve(sieve, partition, renumbering, localSieve, height);
    };
    template<typename Sieve, typename Section, typename Renumbering>
    static void sizeLocalSieveV(const Obj<Sieve>& sieve, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Sieve>& localSieve, const int height = 0) {
      typedef std::set<typename Sieve::point_type> pointSet;
      const typename Section::value_type *points    = partition->restrictPoint(sieve->commRank());
      const int                           numPoints = partition->getFiberDimension(sieve->commRank());
      int                                 maxSize   = std::max(0, std::max(sieve->getMaxConeSize(), sieve->getMaxSupportSize()));
      const pointSet                      pSet(points, &points[numPoints]);
      ISieveVisitor::FilteredPointRetriever<Sieve,pointSet,Renumbering> fV(pSet, renumbering, maxSize);

      for(int p = 0; p < numPoints; ++p) {
        sieve->cone(points[p], fV);
        localSieve->setConeSize(renumbering[points[p]], fV.getSize());
        fV.clear();
        sieve->support(points[p], fV);
        localSieve->setSupportSize(renumbering[points[p]], fV.getSize());
        fV.clear();
      }
    };
    template<typename Mesh, typename Section, typename Renumbering>
    static void sizeLocalMeshV(const Obj<Mesh>& mesh, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Mesh>& localMesh, const int height = 0) {
      const Obj<typename Mesh::sieve_type>& sieve      = mesh->getSieve();
      const Obj<typename Mesh::sieve_type>& localSieve = localMesh->getSieve();

      sizeLocalSieveV(sieve, partition, renumbering, localSieve, height);
    };
    template<typename Sieve, typename Section, typename Renumbering>
    static void createLocalLabelV(const Obj<Sieve>& sieve, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Sieve>& localSieve, const int height = 0) {
      typedef std::set<typename Sieve::point_type> pointSet;
      typedef ISieveVisitor::FilteredPointRetriever<Sieve,pointSet,Renumbering> visitor_type;
      const typename Section::value_type *points    = partition->restrictPoint(sieve->commRank());
      const int                           numPoints = partition->getFiberDimension(sieve->commRank());
      int                                 maxSize   = std::max(0, std::max(sieve->getMaxConeSize(), sieve->getMaxSupportSize()));
      typename Sieve::point_type         *oPoints   = new typename Sieve::point_type[std::max(1, sieve->getMaxConeSize())];
      int                                *oOrients  = new int[std::max(1, sieve->getMaxConeSize())];
      const pointSet                      pSet(points, &points[numPoints]);
      visitor_type fV(pSet, renumbering, maxSize);

      for(int p = 0; p < numPoints; ++p) {
        fV.useRenumbering(false);
        sieve->orientedCone(points[p], fV);
        const typename visitor_type::oriented_point_type *q = fV.getOrientedPoints();
        const int                                         n = fV.getOrientedSize();
        for(int i = 0; i < n; ++i) {
          oPoints[i]  = q[i].first;
          oOrients[i] = q[i].second;
        }
        localSieve->setCone(oPoints, renumbering[points[p]]);
        localSieve->setConeOrientation(oOrients, renumbering[points[p]]);
        fV.clear();
        fV.useRenumbering(true);
        sieve->support(points[p], fV);
        if (fV.getSize()) {localSieve->setSupport(points[p], fV.getPoints());}
        fV.clear();
      }
      delete [] oPoints;
      delete [] oOrients;
    };
    template<typename Sieve, typename Section, typename Renumbering>
    static void createLocalSieveV(const Obj<Sieve>& sieve, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Sieve>& localSieve, const int height = 0) {
      typedef std::set<typename Sieve::point_type> pointSet;
      typedef ISieveVisitor::FilteredPointRetriever<Sieve,pointSet,Renumbering> visitor_type;
      const typename Section::value_type *points    = partition->restrictPoint(sieve->commRank());
      const int                           numPoints = partition->getFiberDimension(sieve->commRank());
      int                                 maxSize   = std::max(0, std::max(sieve->getMaxConeSize(), sieve->getMaxSupportSize()));
      typename Sieve::point_type         *oPoints   = new typename Sieve::point_type[std::max(1, sieve->getMaxConeSize())];
      int                                *oOrients  = new int[std::max(1, sieve->getMaxConeSize())];
      const pointSet                      pSet(points, &points[numPoints]);
      visitor_type fV(pSet, renumbering, maxSize);

      for(int p = 0; p < numPoints; ++p) {
        ///sieve->cone(points[p], fV);
        ///localSiaeve->setCone(fV.getPoints(), renumbering[points[p]]);
        sieve->orientedCone(points[p], fV);
        const typename visitor_type::oriented_point_type *q = fV.getOrientedPoints();
        const int                                         n = fV.getOrientedSize();
        for(int i = 0; i < n; ++i) {
          oPoints[i]  = q[i].first;
          oOrients[i] = q[i].second;
        }
        localSieve->setCone(oPoints, renumbering[points[p]]);
        localSieve->setConeOrientation(oOrients, renumbering[points[p]]);
        fV.clear();
        sieve->support(points[p], fV);
        localSieve->setSupport(renumbering[points[p]], fV.getPoints());
        fV.clear();
      }
      delete [] oPoints;
      delete [] oOrients;
    };
    template<typename Mesh, typename Section, typename Renumbering>
    static void createLocalMeshV(const Obj<Mesh>& mesh, const Obj<Section>& partition, Renumbering& renumbering, const Obj<Mesh>& localMesh, const int height = 0) {
      const Obj<typename Mesh::sieve_type>& sieve      = mesh->getSieve();
      const Obj<typename Mesh::sieve_type>& localSieve = localMesh->getSieve();

      createLocalSieveV(sieve, partition, renumbering, localSieve, height);
    };
  public: // Partitioning
    //   partition:    Should be properly allocated on input
    //   height:       Height of the point set to uniquely partition
    // TODO: Could rebind assignment section to the type of the output
    template<typename Mesh, typename Section>
    static void createPartition(const Obj<Mesh>& mesh, const Obj<Section>& partition, const int height = 0) {
      MeshManager<Mesh> manager(mesh, height);
      int              *start     = NULL;
      int              *adjacency = NULL;

      if (height == 0) {
        int numVertices;

        buildDualCSR(mesh, &numVertices, &start, &adjacency, GraphPartitioner::zeroBase());
        GraphPartitioner().partition(numVertices, start, adjacency, partition, manager);
        destroyCSR(numVertices, start, adjacency);
      } else if (height == 1) {
        int numEdges;

        buildFaceDualCSR(mesh, mesh->getFactory()->getNumbering(mesh, mesh->depth()-1), &numEdges, &start, &adjacency, GraphPartitioner::zeroBase());
        GraphPartitioner().partition(numEdges, start, adjacency, partition, manager);
        destroyCSR(numEdges, start, adjacency);
      } else {
        throw ALE::Exception("Invalid partition height");
      }
    };
    template<typename Mesh, typename Section>
    static void createPartitionV(const Obj<Mesh>& mesh, const Obj<Section>& partition, const int height = 0) {
      MeshManager<Mesh> manager(mesh, height);
      int              *start     = NULL;
      int              *adjacency = NULL;

      PETSc::Log::Event("PartitionCreate").begin();
      if (height == 0) {
        int numVertices;

        buildDualCSRV(mesh, &numVertices, &start, &adjacency, GraphPartitioner::zeroBase());
        GraphPartitioner().partition(numVertices, start, adjacency, partition, manager);
        destroyCSR(numVertices, start, adjacency);
      } else if (height == 1) {
        int numEdges;

        throw ALE::Exception("Not yet implemented");
#if 0
        buildFaceDualCSRV(mesh, mesh->getFactory()->getNumbering(mesh, mesh->depth()-1), &numEdges, &start, &adjacency, GraphPartitioner::zeroBase());
#endif
        GraphPartitioner().partition(numEdges, start, adjacency, partition, manager);
        destroyCSR(numEdges, start, adjacency);
      } else {
        throw ALE::Exception("Invalid partition height");
      }
      PETSc::Log::Event("PartitionCreate").end();
    };
    // Add in the points in the closure (and star) of the partitioned points
    template<typename Mesh, typename Section>
    static void createPartitionClosure(const Obj<Mesh>& mesh, const Obj<Section>& pointPartition, const Obj<Section>& partition, const int height = 0) {
      const Obj<typename Mesh::sieve_type>& sieve = mesh->getSieve();
      const typename Section::chart_type&   chart = pointPartition->getChart();
      size_t                                size  = 0;

      for(typename Section::chart_type::const_iterator r_iter = chart.begin(); r_iter != chart.end(); ++r_iter) {
        const typename Section::value_type    *points    = pointPartition->restrictPoint(*r_iter);
        const int                              numPoints = pointPartition->getFiberDimension(*r_iter);
        std::set<typename Section::value_type> closure;

        // TODO: Use Quiver's closure() here instead
        for(int p = 0; p < numPoints; ++p) {
          Obj<typename Mesh::sieve_type::coneSet> current = new typename Mesh::sieve_type::coneSet();
          Obj<typename Mesh::sieve_type::coneSet> next    = new typename Mesh::sieve_type::coneSet();
          Obj<typename Mesh::sieve_type::coneSet> tmp;

          current->insert(points[p]);
          closure.insert(points[p]);
          while(current->size()) {
            for(typename Mesh::sieve_type::coneSet::const_iterator p_iter = current->begin(); p_iter != current->end(); ++p_iter) {
              const Obj<typename Mesh::sieve_type::traits::coneSequence>& cone = sieve->cone(*p_iter);
            
              for(typename Mesh::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cone->end(); ++c_iter) {
                closure.insert(*c_iter);
                next->insert(*c_iter);
              }
            }
            tmp = current; current = next; next = tmp;
            next->clear();
          }
          if (height) {
            current->insert(points[p]);
            while(current->size()) {
              for(typename Mesh::sieve_type::coneSet::const_iterator p_iter = current->begin(); p_iter != current->end(); ++p_iter) {
                const Obj<typename Mesh::sieve_type::traits::supportSequence>& support = sieve->support(*p_iter);
            
                for(typename Mesh::sieve_type::traits::supportSequence::iterator s_iter = support->begin(); s_iter != support->end(); ++s_iter) {
                  closure.insert(*s_iter);
                  next->insert(*s_iter);
                }
              }
              tmp = current; current = next; next = tmp;
              next->clear();
            }
          }
        }
        partition->setFiberDimension(*r_iter, closure.size());
        size = std::max(size, closure.size());
      }
      partition->allocatePoint();
      typename Section::value_type *values = new typename Section::value_type[size];

      for(typename Section::chart_type::const_iterator r_iter = chart.begin(); r_iter != chart.end(); ++r_iter) {
        const typename Section::value_type    *points    = pointPartition->restrictPoint(*r_iter);
        const int                              numPoints = pointPartition->getFiberDimension(*r_iter);
        std::set<typename Section::value_type> closure;

        // TODO: Use Quiver's closure() here instead
        for(int p = 0; p < numPoints; ++p) {
          Obj<typename Mesh::sieve_type::coneSet> current = new typename Mesh::sieve_type::coneSet();
          Obj<typename Mesh::sieve_type::coneSet> next    = new typename Mesh::sieve_type::coneSet();
          Obj<typename Mesh::sieve_type::coneSet> tmp;

          current->insert(points[p]);
          closure.insert(points[p]);
          while(current->size()) {
            for(typename Mesh::sieve_type::coneSet::const_iterator p_iter = current->begin(); p_iter != current->end(); ++p_iter) {
              const Obj<typename Mesh::sieve_type::traits::coneSequence>& cone = sieve->cone(*p_iter);
            
              for(typename Mesh::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cone->end(); ++c_iter) {
                closure.insert(*c_iter);
                next->insert(*c_iter);
              }
            }
            tmp = current; current = next; next = tmp;
            next->clear();
          }
          if (height) {
            current->insert(points[p]);
            while(current->size()) {
              for(typename Mesh::sieve_type::coneSet::const_iterator p_iter = current->begin(); p_iter != current->end(); ++p_iter) {
                const Obj<typename Mesh::sieve_type::traits::supportSequence>& support = sieve->support(*p_iter);
            
                for(typename Mesh::sieve_type::traits::supportSequence::iterator s_iter = support->begin(); s_iter != support->end(); ++s_iter) {
                  closure.insert(*s_iter);
                  next->insert(*s_iter);
                }
              }
              tmp = current; current = next; next = tmp;
              next->clear();
            }
          }
        }
        int i = 0;

        for(typename std::set<typename Section::value_type>::const_iterator p_iter = closure.begin(); p_iter != closure.end(); ++p_iter, ++i) {
          values[i] = *p_iter;
        }
        partition->updatePoint(*r_iter, values);
      }
      delete [] values;
    };
    template<typename Mesh, typename Section>
    static void createPartitionClosureV(const Obj<Mesh>& mesh, const Obj<Section>& pointPartition, const Obj<Section>& partition, const int height = 0) {
      typedef ISieveVisitor::TransitiveClosureVisitor<typename Mesh::sieve_type> visitor_type;
      const Obj<typename Mesh::sieve_type>& sieve = mesh->getSieve();
      const typename Section::chart_type&   chart = pointPartition->getChart();
      size_t                                size  = 0;

      PETSc::Log::Event("PartitionClosure").begin();
      for(typename Section::chart_type::const_iterator r_iter = chart.begin(); r_iter != chart.end(); ++r_iter) {
        const typename Section::value_type *points    = pointPartition->restrictPoint(*r_iter);
        const int                           numPoints = pointPartition->getFiberDimension(*r_iter);
        typename visitor_type::visitor_type nV;
        visitor_type                        cV(*sieve, nV);

        for(int p = 0; p < numPoints; ++p) {
          sieve->cone(points[p], cV);
          if (height) {
            cV.setIsCone(false);
            sieve->support(points[p], cV);
          }
        }
        partition->setFiberDimension(*r_iter, cV.getPoints().size());
        size = std::max(size, cV.getPoints().size());
      }
      partition->allocatePoint();
      typename Section::value_type *values = new typename Section::value_type[size];

      for(typename Section::chart_type::const_iterator r_iter = chart.begin(); r_iter != chart.end(); ++r_iter) {
        const typename Section::value_type *points    = pointPartition->restrictPoint(*r_iter);
        const int                           numPoints = pointPartition->getFiberDimension(*r_iter);
        typename visitor_type::visitor_type nV;
        visitor_type                        cV(*sieve, nV);

        for(int p = 0; p < numPoints; ++p) {
          sieve->cone(points[p], cV);
          if (height) {
            cV.setIsCone(false);
            sieve->support(points[p], cV);
          }
        }
        int i = 0;

        for(typename std::set<typename Mesh::point_type>::const_iterator p_iter = cV.getPoints().begin(); p_iter != cV.getPoints().end(); ++p_iter, ++i) {
          values[i] = *p_iter;
        }
        partition->updatePoint(*r_iter, values);
      }
      delete [] values;
      PETSc::Log::Event("PartitionClosure").end();
    };
    // Create a section mapping points to partitions
    template<typename Section, typename MapSection>
    static void createPartitionMap(const Obj<Section>& partition, const Obj<MapSection>& partitionMap) {
      const typename Section::chart_type& chart = partition->getChart();

      for(typename Section::chart_type::const_iterator p_iter = chart.begin(); p_iter != chart.end(); ++p_iter) {
        partitionMap->setFiberDimension(*p_iter, 1);
      }
      partitionMap->allocatePoint();
      for(typename Section::chart_type::const_iterator p_iter = chart.begin(); p_iter != chart.end(); ++p_iter) {
        const typename Section::value_type *points = partition->restrictPoint(*p_iter);
        const int                           size   = partition->getFiberDimension(*p_iter);
        const typename Section::point_type  part   = *p_iter;

        for(int i = 0; i < size; ++i) {
          partitionMap->updatePoint(points[i], &part);
        }
      }
    };
  };
#endif

  namespace New {
    template<typename Bundle_, typename Alloc_ = typename Bundle_::alloc_type>
    class Partitioner {
    public:
      typedef Bundle_                          bundle_type;
      typedef Alloc_                           alloc_type;
      typedef typename bundle_type::sieve_type sieve_type;
      typedef typename bundle_type::point_type point_type;
    public:
      #undef __FUNCT__
      #define __FUNCT__ "buildDualCSR"
      // This creates a CSR representation of the adjacency matrix for cells
      // - We allow an exception to contiguous numbering.
      //   If the cell id > numElements, we assign a new number starting at
      //     the top and going downward. I know these might not match up with
      //     the iterator order, but we can fix it later.
      static void buildDualCSR(const Obj<bundle_type>& bundle, const int dim, int **offsets, int **adjacency) {
        ALE_LOG_EVENT_BEGIN;
        typedef typename ALE::New::Completion<bundle_type, point_type, alloc_type> completion;
        const Obj<sieve_type>&                           sieve        = bundle->getSieve();
        const Obj<typename bundle_type::label_sequence>& elements     = bundle->heightStratum(0);
        Obj<sieve_type>                                  overlapSieve = new sieve_type(bundle->comm(), bundle->debug());
        std::map<point_type, point_type>                 newCells;
        int  numElements = elements->size();
        int  newCell     = numElements;
        int *off         = new int[numElements+1];
        int  offset      = 0;
        int *adj;

        completion::scatterSupports(sieve, overlapSieve, bundle->getSendOverlap(), bundle->getRecvOverlap(), bundle);
        if (numElements == 0) {
          *offsets   = NULL;
          *adjacency = NULL;
          ALE_LOG_EVENT_END;
          return;
        }
        if (bundle->depth() == dim) {
          int e = 1;

          off[0] = 0;
          for(typename bundle_type::label_sequence::iterator e_iter = elements->begin(); e_iter != elements->end(); ++e_iter) {
            const Obj<typename sieve_type::traits::coneSequence>& faces  = sieve->cone(*e_iter);
            typename sieve_type::traits::coneSequence::iterator   fBegin = faces->begin();
            typename sieve_type::traits::coneSequence::iterator   fEnd   = faces->end();

            off[e] = off[e-1];
            for(typename sieve_type::traits::coneSequence::iterator f_iter = fBegin; f_iter != fEnd; ++f_iter) {
              if (sieve->support(*f_iter)->size() == 2) {
                off[e]++;
              } else if ((sieve->support(*f_iter)->size() == 1) && (overlapSieve->support(*f_iter)->size() == 1)) {
                off[e]++;
              }
            }
            e++;
          }
          adj = new int[off[numElements]];
          for(typename bundle_type::label_sequence::iterator e_iter = elements->begin(); e_iter != elements->end(); ++e_iter) {
            const Obj<typename sieve_type::traits::coneSequence>& faces  = sieve->cone(*e_iter);
            typename sieve_type::traits::coneSequence::iterator   fBegin = faces->begin();
            typename sieve_type::traits::coneSequence::iterator   fEnd   = faces->end();

            for(typename sieve_type::traits::coneSequence::iterator f_iter = fBegin; f_iter != fEnd; ++f_iter) {
              const Obj<typename sieve_type::traits::supportSequence>& neighbors = sieve->support(*f_iter);
              typename sieve_type::traits::supportSequence::iterator   nBegin    = neighbors->begin();
              typename sieve_type::traits::supportSequence::iterator   nEnd      = neighbors->end();

              for(typename sieve_type::traits::supportSequence::iterator n_iter = nBegin; n_iter != nEnd; ++n_iter) {
                if (*n_iter != *e_iter) adj[offset++] = *n_iter;
              }
              const Obj<typename sieve_type::traits::supportSequence>& oNeighbors = overlapSieve->support(*f_iter);
              typename sieve_type::traits::supportSequence::iterator   onBegin    = oNeighbors->begin();
              typename sieve_type::traits::supportSequence::iterator   onEnd      = oNeighbors->end();

              for(typename sieve_type::traits::supportSequence::iterator n_iter = onBegin; n_iter != onEnd; ++n_iter) {
                adj[offset++] = *n_iter;
              }
            }
          }
        } else if (bundle->depth() == 1) {
          std::set<point_type> *neighborCells = new std::set<point_type>[numElements];
          int corners      = sieve->cone(*elements->begin())->size();
          int faceVertices = -1;

          if (corners == dim+1) {
            faceVertices = dim;
          } else if ((dim == 2) && (corners == 4)) {
            faceVertices = 2;
          } else if ((dim == 3) && (corners == 8)) {
            faceVertices = 4;
          } else {
            throw ALE::Exception("Could not determine number of face vertices");
          }
          for(typename bundle_type::label_sequence::iterator e_iter = elements->begin(); e_iter != elements->end(); ++e_iter) {
            const Obj<typename sieve_type::traits::coneSequence>& vertices  = sieve->cone(*e_iter);
            typename sieve_type::traits::coneSequence::iterator vEnd = vertices->end();

            for(typename sieve_type::traits::coneSequence::iterator v_iter = vertices->begin(); v_iter != vEnd; ++v_iter) {
              const Obj<typename sieve_type::traits::supportSequence>& neighbors = sieve->support(*v_iter);
              typename sieve_type::traits::supportSequence::iterator nEnd = neighbors->end();

              for(typename sieve_type::traits::supportSequence::iterator n_iter = neighbors->begin(); n_iter != nEnd; ++n_iter) {
                if (*e_iter == *n_iter) continue;
                if ((int) sieve->nMeet(*e_iter, *n_iter, 1)->size() == faceVertices) {
                  if ((*e_iter < numElements) && (*n_iter < numElements)) {
                    neighborCells[*e_iter].insert(*n_iter);
                  } else {
                    point_type e = *e_iter, n = *n_iter;

                    if (*e_iter >= numElements) {
                      if (newCells.find(*e_iter) == newCells.end()) newCells[*e_iter] = --newCell;
                      e = newCells[*e_iter];
                    }
                    if (*n_iter >= numElements) {
                      if (newCells.find(*n_iter) == newCells.end()) newCells[*n_iter] = --newCell;
                      n = newCells[*n_iter];
                    }
                    neighborCells[e].insert(n);
                  }
                }
              }
            }
          }
          off[0] = 0;
          for(int e = 1; e <= numElements; e++) {
            off[e] = neighborCells[e-1].size() + off[e-1];
          }
          adj = new int[off[numElements]];
          for(int e = 0; e < numElements; e++) {
            for(typename std::set<point_type>::iterator n_iter = neighborCells[e].begin(); n_iter != neighborCells[e].end(); ++n_iter) {
              adj[offset++] = *n_iter;
            }
          }
          delete [] neighborCells;
        } else {
          throw ALE::Exception("Dual creation not defined for partially interpolated meshes");
        }
        if (offset != off[numElements]) {
          ostringstream msg;
          msg << "ERROR: Total number of neighbors " << offset << " does not match the offset array " << off[numElements];
          throw ALE::Exception(msg.str().c_str());
        }
        //std::cout << "numElements: " << numElements << " newCell: " << newCell << std::endl;
        *offsets   = off;
        *adjacency = adj;
        ALE_LOG_EVENT_END;
      };
      #undef __FUNCT__
      #define __FUNCT__ "buildFaceCSR"
      // This creates a CSR representation of the adjacency hypergraph for faces
      static void buildFaceCSR(const Obj<bundle_type>& bundle, const int dim, const Obj<typename bundle_type::numbering_type>& fNumbering, int *numEdges, int **offsets, int **adjacency) {
        ALE_LOG_EVENT_BEGIN;
        const Obj<sieve_type>&                           sieve    = bundle->getSieve();
        const Obj<typename bundle_type::label_sequence>& elements = bundle->heightStratum(0);
        int  numElements = elements->size();
        int *off         = new int[numElements+1];
        int  e;

        if (bundle->depth() != dim) {
          throw ALE::Exception("Not yet implemented for non-interpolated meshes");
        }
        off[0] = 0;
        e      = 1;
        for(typename bundle_type::label_sequence::iterator e_iter = elements->begin(); e_iter != elements->end(); ++e_iter) {
          off[e] = sieve->cone(*e_iter)->size() + off[e-1];
          e++;
        }
        int *adj    = new int[off[numElements]];
        int  offset = 0;
        for(typename bundle_type::label_sequence::iterator e_iter = elements->begin(); e_iter != elements->end(); ++e_iter) {
          const Obj<typename sieve_type::traits::coneSequence>& faces = sieve->cone(*e_iter);
          typename sieve_type::traits::coneSequence::iterator   fEnd  = faces->end();

          for(typename sieve_type::traits::coneSequence::iterator f_iter = faces->begin(); f_iter != fEnd; ++f_iter) {
            adj[offset++] = fNumbering->getIndex(*f_iter);
          }
        }
        if (offset != off[numElements]) {
          ostringstream msg;
          msg << "ERROR: Total number of neighbors " << offset << " does not match the offset array " << off[numElements];
          throw ALE::Exception(msg.str().c_str());
        }
        *numEdges  = numElements;
        *offsets   = off;
        *adjacency = adj;
        ALE_LOG_EVENT_END;
      };
      template<typename PartitionType>
      static PartitionType *subordinatePartition(const Obj<bundle_type>& bundle, int levels, const Obj<bundle_type>& subBundle, const PartitionType assignment[]) {
        const Obj<typename bundle_type::numbering_type>& cNumbering = bundle->getFactory()->getLocalNumbering(bundle, bundle->depth());
        const Obj<typename bundle_type::label_sequence>& cells      = subBundle->heightStratum(0);
        const Obj<typename bundle_type::numbering_type>& sNumbering = bundle->getFactory()->getLocalNumbering(subBundle, subBundle->depth());
        const int        numCells      = cells->size();
        PartitionType   *subAssignment = new PartitionType[numCells];

        if (levels != 1) {
          throw ALE::Exception("Cannot calculate subordinate partition for any level separation other than 1");
        } else {
          const Obj<typename bundle_type::sieve_type>&   sieve    = bundle->getSieve();
          const Obj<typename bundle_type::sieve_type>&   subSieve = subBundle->getSieve();
          Obj<typename bundle_type::sieve_type::coneSet> tmpSet   = new typename bundle_type::sieve_type::coneSet();
          Obj<typename bundle_type::sieve_type::coneSet> tmpSet2  = new typename bundle_type::sieve_type::coneSet();

          for(typename bundle_type::label_sequence::iterator c_iter = cells->begin(); c_iter != cells->end(); ++c_iter) {
            const Obj<typename bundle_type::sieve_type::coneSequence>& cone = subSieve->cone(*c_iter);

            Obj<typename bundle_type::sieve_type::supportSet> cell = sieve->nJoin1(cone);
            if (cell->size() != 1) {
              std::cout << "Indeterminate subordinate partition for face " << *c_iter << std::endl;
              for(typename bundle_type::sieve_type::supportSet::iterator s_iter = cell->begin(); s_iter != cell->end(); ++s_iter) {
                std::cout << "  cell " << *s_iter << std::endl;
              }
              // Could relax this to choosing the first one
              throw ALE::Exception("Indeterminate subordinate partition");
            }
            subAssignment[sNumbering->getIndex(*c_iter)] = assignment[cNumbering->getIndex(*cell->begin())];
            tmpSet->clear();
            tmpSet2->clear();
          }
        }
        return subAssignment;
      };
    };
#ifdef PETSC_HAVE_CHACO
    namespace Chaco {
      template<typename Bundle_>
      class Partitioner {
      public:
        typedef Bundle_                          bundle_type;
        typedef typename bundle_type::sieve_type sieve_type;
        typedef typename bundle_type::point_type point_type;
        typedef short int                        part_type;
      public:
        #undef __FUNCT__
        #define __FUNCT__ "ChacoPartitionSieve"
        static part_type *partitionSieve(const Obj<bundle_type>& bundle, const int dim) {
          part_type *assignment = NULL; /* set number of each vtx (length n) */
          int       *start;             /* start of edge list for each vertex */
          int       *adjacency;         /* = adj -> j; edge list data  */

          ALE_LOG_EVENT_BEGIN;
          ALE::New::Partitioner<bundle_type>::buildDualCSR(bundle, dim, &start, &adjacency);
          if (bundle->commRank() == 0) {
            /* arguments for Chaco library */
            FREE_GRAPH = 0;                         /* Do not let Chaco free my memory */
            int nvtxs;                              /* number of vertices in full graph */
            int *vwgts = NULL;                      /* weights for all vertices */
            float *ewgts = NULL;                    /* weights for all edges */
            float *x = NULL, *y = NULL, *z = NULL;  /* coordinates for inertial method */
            char *outassignname = NULL;             /*  name of assignment output file */
            char *outfilename = NULL;               /* output file name */
            int architecture = dim;                 /* 0 => hypercube, d => d-dimensional mesh */
            int ndims_tot = 0;                      /* total number of cube dimensions to divide */
            int mesh_dims[3];                       /* dimensions of mesh of processors */
            double *goal = NULL;                    /* desired set sizes for each set */
            int global_method = 1;                  /* global partitioning algorithm */
            int local_method = 1;                   /* local partitioning algorithm */
            int rqi_flag = 0;                       /* should I use RQI/Symmlq eigensolver? */
            int vmax = 200;                         /* how many vertices to coarsen down to? */
            int ndims = 1;                          /* number of eigenvectors (2^d sets) */
            double eigtol = 0.001;                  /* tolerance on eigenvectors */
            long seed = 123636512;                  /* for random graph mutations */
	    float *vCoords[3];
            PetscErrorCode ierr;

	    ierr = PetscOptionsGetInt(PETSC_NULL, "-partitioner_chaco_global_method", &global_method, PETSC_NULL);CHKERROR(ierr, "Error in PetscOptionsGetInt");
	    ierr = PetscOptionsGetInt(PETSC_NULL, "-partitioner_chaco_local_method",  &local_method,  PETSC_NULL);CHKERROR(ierr, "Error in PetscOptionsGetInt");
	    if (global_method == 3) {
	      // Inertial Partitioning
	      ierr = PetscMalloc3(nvtxs,float,&x,nvtxs,float,&y,nvtxs,float,&z);CHKERROR(ierr, "Error in PetscMalloc");
	      vCoords[0] = x; vCoords[1] = y; vCoords[2] = z;
	      const Obj<typename bundle_type::label_sequence>&    cells       = bundle->heightStratum(0);
	      const Obj<typename bundle_type::real_section_type>& coordinates = bundle->getRealSection("coordinates");
	      const int corners = bundle->size(coordinates, *(cells->begin()))/dim;
	      int       c       = 0;

	      for(typename bundle_type::label_sequence::iterator c_iter = cells->begin(); c_iter !=cells->end(); ++c_iter, ++c) {
		const double *coords = bundle->restrictClosure(coordinates, *c_iter);

		for(int d = 0; d < dim; ++d) {
		  vCoords[d][c] = 0.0;
		}
		for(int v = 0; v < corners; ++v) {
		  for(int d = 0; d < dim; ++d) {
		    vCoords[d][c] += coords[v*dim+d];
		  }
		}
		for(int d = 0; d < dim; ++d) {
		  vCoords[d][c] /= corners;
		}
	      }
	    }

            nvtxs = bundle->heightStratum(0)->size();
            mesh_dims[0] = bundle->commSize(); mesh_dims[1] = 1; mesh_dims[2] = 1;
            for(int e = 0; e < start[nvtxs]; e++) {
              adjacency[e]++;
            }
            assignment = new part_type[nvtxs];
            ierr = PetscMemzero(assignment, nvtxs * sizeof(part_type));CHKERROR(ierr, "Error in PetscMemzero");

            /* redirect output to buffer: chaco -> msgLog */
#ifdef PETSC_HAVE_UNISTD_H
            char *msgLog;
            int fd_stdout, fd_pipe[2], count;

            fd_stdout = dup(1);
            pipe(fd_pipe);
            close(1);
            dup2(fd_pipe[1], 1);
            msgLog = new char[16284];
#endif

            ierr = interface(nvtxs, start, adjacency, vwgts, ewgts, x, y, z,
                             outassignname, outfilename, assignment, architecture, ndims_tot,
                             mesh_dims, goal, global_method, local_method, rqi_flag, vmax, ndims,
                             eigtol, seed);

#ifdef PETSC_HAVE_UNISTD_H
            int SIZE_LOG  = 10000;

            fflush(stdout);
            count = read(fd_pipe[0], msgLog, (SIZE_LOG - 1) * sizeof(char));
            if (count < 0) count = 0;
            msgLog[count] = 0;
            close(1);
            dup2(fd_stdout, 1);
            close(fd_stdout);
            close(fd_pipe[0]);
            close(fd_pipe[1]);
            if (bundle->debug()) {
              std::cout << msgLog << std::endl;
            }
            delete [] msgLog;
#endif
	    if (global_method == 3) {
	      // Inertial Partitioning
	      ierr = PetscFree3(x, y, z);CHKERROR(ierr, "Error in PetscFree");
	    }
          }
          if (adjacency) delete [] adjacency;
          if (start)     delete [] start;
          ALE_LOG_EVENT_END;
          return assignment;
        };
        static part_type *partitionSieveByFace(const Obj<bundle_type>& bundle, const int dim) {
          throw ALE::Exception("Chaco cannot partition a mesh by faces");
        };
      };
    };
#endif
#ifdef PETSC_HAVE_PARMETIS
    namespace ParMetis {
      template<typename Bundle_>
      class Partitioner {
      public:
        typedef Bundle_                          bundle_type;
        typedef typename bundle_type::sieve_type sieve_type;
        typedef typename bundle_type::point_type point_type;
        typedef int                              part_type;
      public:
        #undef __FUNCT__
        #define __FUNCT__ "ParMetisPartitionSieve"
        static part_type *partitionSieve(const Obj<bundle_type>& bundle, const int dim) {
          int    nvtxs      = 0;    // The number of vertices in full graph
          int   *vtxdist;           // Distribution of vertices across processes
          int   *xadj;              // Start of edge list for each vertex
          int   *adjncy;            // Edge lists for all vertices
          int   *vwgt       = NULL; // Vertex weights
          int   *adjwgt     = NULL; // Edge weights
          int    wgtflag    = 0;    // Indicates which weights are present
          int    numflag    = 0;    // Indicates initial offset (0 or 1)
          int    ncon       = 1;    // The number of weights per vertex
          int    nparts     = bundle->commSize(); // The number of partitions
          float *tpwgts;            // The fraction of vertex weights assigned to each partition
          float *ubvec;             // The balance intolerance for vertex weights
          int    options[5];        // Options
          // Outputs
          int    edgeCut;           // The number of edges cut by the partition
          int   *assignment = NULL; // The vertex partition

          options[0] = 0; // Use all defaults
          vtxdist    = new int[nparts+1];
          vtxdist[0] = 0;
          tpwgts     = new float[ncon*nparts];
          for(int p = 0; p < nparts; ++p) {
            tpwgts[p] = 1.0/nparts;
          }
          ubvec      = new float[ncon];
          ubvec[0]   = 1.05;
          nvtxs      = bundle->heightStratum(0)->size();
          assignment = new part_type[nvtxs];
          MPI_Allgather(&nvtxs, 1, MPI_INT, &vtxdist[1], 1, MPI_INT, bundle->comm());
          for(int p = 2; p <= nparts; ++p) {
            vtxdist[p] += vtxdist[p-1];
          }
          if (bundle->commSize() == 1) {
            PetscMemzero(assignment, nvtxs * sizeof(part_type));
          } else {
            ALE::New::Partitioner<bundle_type>::buildDualCSR(bundle, dim, &xadj, &adjncy);

            if (bundle->debug() && nvtxs) {
              for(int p = 0; p <= nvtxs; ++p) {
                std::cout << "["<<bundle->commRank()<<"]xadj["<<p<<"] = " << xadj[p] << std::endl;
              }
              for(int i = 0; i < xadj[nvtxs]; ++i) {
                std::cout << "["<<bundle->commRank()<<"]adjncy["<<i<<"] = " << adjncy[i] << std::endl;
              }
            }
            if (vtxdist[1] == vtxdist[nparts]) {
              if (bundle->commRank() == 0) {
                METIS_PartGraphKway(&nvtxs, xadj, adjncy, vwgt, adjwgt, &wgtflag, &numflag, &nparts, options, &edgeCut, assignment);
                if (bundle->debug()) {std::cout << "Metis: edgecut is " << edgeCut << std::endl;}
              }
            } else {
              MPI_Comm comm = bundle->comm();

              ParMETIS_V3_PartKway(vtxdist, xadj, adjncy, vwgt, adjwgt, &wgtflag, &numflag, &ncon, &nparts, tpwgts, ubvec, options, &edgeCut, assignment, &comm);
              if (bundle->debug()) {std::cout << "ParMetis: edgecut is " << edgeCut << std::endl;}
            }
            if (xadj   != NULL) delete [] xadj;
            if (adjncy != NULL) delete [] adjncy;
          }
          delete [] vtxdist;
          delete [] tpwgts;
          delete [] ubvec;
          return assignment;
        };
        #undef __FUNCT__
        #define __FUNCT__ "ParMetisPartitionSieveByFace"
        static part_type *partitionSieveByFace(const Obj<bundle_type>& bundle, const int dim) {
#ifdef PETSC_HAVE_HMETIS
          int   *assignment = NULL; // The vertex partition
          int    nvtxs;      // The number of vertices
          int    nhedges;    // The number of hyperedges
          int   *vwgts;      // The vertex weights
          int   *eptr;       // The offsets of each hyperedge
          int   *eind;       // The vertices in each hyperedge, indexed by eptr
          int   *hewgts;     // The hyperedge weights
          int    nparts;     // The number of partitions
          int    ubfactor;   // The allowed load imbalance (1-50)
          int    options[9]; // Options
          // Outputs
          int    edgeCut;    // The number of edges cut by the partition
          const Obj<ALE::Mesh::numbering_type>& fNumbering = bundle->getFactory()->getNumbering(bundle, bundle->depth()-1);

          if (topology->commRank() == 0) {
            nvtxs      = bundle->heightStratum(1)->size();
            vwgts      = NULL;
            hewgts     = NULL;
            nparts     = bundle->commSize();
            ubfactor   = 5;
            options[0] = 1;  // Use all defaults
            options[1] = 10; // Number of bisections tested
            options[2] = 1;  // Vertex grouping scheme
            options[3] = 1;  // Objective function
            options[4] = 1;  // V-cycle refinement
            options[5] = 0;
            options[6] = 0;
            options[7] = 1; // Random seed
            options[8] = 24; // Debugging level
            assignment = new part_type[nvtxs];

            if (bundle->commSize() == 1) {
              PetscMemzero(assignment, nvtxs * sizeof(part_type));
            } else {
              ALE::New::Partitioner<bundle_type>::buildFaceCSR(bundle, dim, fNumbering, &nhedges, &eptr, &eind);
              HMETIS_PartKway(nvtxs, nhedges, vwgts, eptr, eind, hewgts, nparts, ubfactor, options, assignment, &edgeCut);

              delete [] eptr;
              delete [] eind;
            }
            if (bundle->debug()) {for (int i = 0; i<nvtxs; i++) printf("[%d] %d\n", PetscGlobalRank, assignment[i]);}
          } else {
            assignment = NULL;
          }
          return assignment;
#else
          throw ALE::Exception("hmetis partitioner is not available.");
#endif
        };
      };
    };
#endif
#ifdef PETSC_HAVE_ZOLTAN
    namespace Zoltan {
      template<typename Bundle_>
      class Partitioner {
      public:
        typedef Bundle_                          bundle_type;
        typedef typename bundle_type::sieve_type sieve_type;
        typedef typename bundle_type::point_type point_type;
        typedef int                              part_type;
      public:
        static part_type *partitionSieve(const Obj<bundle_type>& bundle, const int dim) {
          throw ALE::Exception("Zoltan partition by cells not implemented");
        };
        #undef __FUNCT__
        #define __FUNCT__ "ZoltanPartitionSieveByFace"
        static part_type *partitionSieveByFace(const Obj<bundle_type>& bundle, const int dim) {
          // Outputs
          float         version;           // The library version
          int           changed;           // Did the partition change?
          int           numGidEntries;     // Number of array entries for a single global ID (1)
          int           numLidEntries;     // Number of array entries for a single local ID (1)
          int           numImport;         // The number of imported points
          ZOLTAN_ID_PTR import_global_ids; // The imported points
          ZOLTAN_ID_PTR import_local_ids;  // The imported points
          int          *import_procs;      // The proc each point was imported from
          int          *import_to_part;    // The partition of each imported point
          int           numExport;         // The number of exported points
          ZOLTAN_ID_PTR export_global_ids; // The exported points
          ZOLTAN_ID_PTR export_local_ids;  // The exported points
          int          *export_procs;      // The proc each point was exported to
          int          *export_to_part;    // The partition assignment of all local points
          int          *assignment;        // The partition assignment of all local points
          const Obj<typename bundle_type::numbering_type>& fNumbering = bundle->getFactory()->getNumbering(bundle, bundle->depth()-1);

          if (bundle->commSize() == 1) {
            PetscMemzero(assignment, bundle->heightStratum(1)->size() * sizeof(part_type));
          } else {
            if (bundle->commRank() == 0) {
              nvtxs_Zoltan = bundle->heightStratum(1)->size();
              ALE::New::Partitioner<bundle_type>::buildFaceCSR(bundle, dim, fNumbering, &nhedges_Zoltan, &eptr_Zoltan, &eind_Zoltan);
              assignment = new int[nvtxs_Zoltan];
            } else {
              nvtxs_Zoltan   = bundle->heightStratum(1)->size();
              nhedges_Zoltan = 0;
              eptr_Zoltan    = new int[1];
              eind_Zoltan    = new int[1];
              eptr_Zoltan[0] = 0;
              assignment     = NULL;
            }

            int ierr = Zoltan_Initialize(0, NULL, &version);
            struct Zoltan_Struct *zz = Zoltan_Create(bundle->comm());
            // General parameters
            Zoltan_Set_Param(zz, "DEBUG_LEVEL", "2");
            Zoltan_Set_Param(zz, "LB_METHOD", "PHG");
            Zoltan_Set_Param(zz, "RETURN_LISTS", "PARTITION");
            // PHG parameters
            Zoltan_Set_Param(zz, "PHG_OUTPUT_LEVEL", "2");
            Zoltan_Set_Param(zz, "PHG_EDGE_SIZE_THRESHOLD", "1.0"); // Do not throw out dense edges
            // Call backs
            Zoltan_Set_Num_Obj_Fn(zz, getNumVertices_Zoltan, NULL);
            Zoltan_Set_Obj_List_Fn(zz, getLocalElements_Zoltan, NULL);
            Zoltan_Set_HG_Size_CS_Fn(zz, getHgSizes_Zoltan, NULL);
            Zoltan_Set_HG_CS_Fn(zz, getHg_Zoltan, NULL);
            // Debugging
            //Zoltan_Generate_Files(zz, "zoltan.debug", 1, 0, 0, 1); // if using hypergraph callbacks

            ierr = Zoltan_LB_Partition(zz, &changed, &numGidEntries, &numLidEntries,
                                       &numImport, &import_global_ids, &import_local_ids, &import_procs, &import_to_part,
                                       &numExport, &export_global_ids, &export_local_ids, &export_procs, &export_to_part);
            for(int v = 0; v < nvtxs_Zoltan; ++v) {
              assignment[v] = export_to_part[v];
            }
            Zoltan_LB_Free_Part(&import_global_ids, &import_local_ids, &import_procs, &import_to_part);
            Zoltan_LB_Free_Part(&export_global_ids, &export_local_ids, &export_procs, &export_to_part);
            Zoltan_Destroy(&zz);

            delete [] eptr_Zoltan;
            delete [] eind_Zoltan;
          }
          if (assignment) {for (int i=0; i<nvtxs_Zoltan; i++) printf("[%d] %d\n",PetscGlobalRank,assignment[i]);}
          return assignment;
        };
      };
    };
#endif
  }
}
#endif