This file is indexed.

/usr/lib/petscdir/3.1/include/sieve/INumbering.hh is in libpetsc3.1-dev 3.1.dfsg-11ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#ifndef included_ALE_INumbering_hh
#define included_ALE_INumbering_hh

#ifndef  included_ALE_IField_hh
#include <IField.hh>
#endif

#ifndef  included_ALE_Completion_hh
#include <Completion.hh>
#endif

namespace ALE {
  template<typename Point_, typename Value_ = int, typename Alloc_ = malloc_allocator<Point_> >
  class INumbering : public IUniformSection<Point_, Value_, 1, Alloc_> {
  public:
    typedef IUniformSection<Point_, Value_, 1, Alloc_> base_type;
    typedef typename base_type::point_type             point_type;
    typedef typename base_type::value_type             value_type;
    typedef typename base_type::atlas_type             atlas_type;
  protected:
    int                       _localSize;
    int                      *_offsets;
    std::map<int, point_type> _invOrder;
  public:
    INumbering(MPI_Comm comm, const int debug = 0) : IUniformSection<Point_, Value_, 1, Alloc_>(comm, debug), _localSize(0) {
      this->_offsets    = new int[this->commSize()+1];
      this->_offsets[0] = 0;
    };
    ~INumbering() {
      delete [] this->_offsets;
    };
  public: // Sizes
    int        getLocalSize() const {return this->_localSize;};
    void       setLocalSize(const int size) {this->_localSize = size;};
    int        getGlobalSize() const {return this->_offsets[this->commSize()];};
    int        getGlobalOffset(const int p) const {return this->_offsets[p];};
    const int *getGlobalOffsets() const {return this->_offsets;};
    void       setGlobalOffsets(const int offsets[]) {
      for(int p = 0; p <= this->commSize(); ++p) {
        this->_offsets[p] = offsets[p];
      }
    };
  public: // Indices
    virtual int getIndex(const point_type& point) {
      const value_type& idx = this->restrictPoint(point)[0];
      if (idx >= 0) {
        return idx;
      }
      return -(idx+1);
    };
    virtual void setIndex(const point_type& point, const int index) {this->updatePoint(point, &index);};
    virtual bool isLocal(const point_type& point) {return this->restrictPoint(point)[0] >= 0;};
    virtual bool isRemote(const point_type& point) {return this->restrictPoint(point)[0] < 0;};
    point_type getPoint(const int& index) {return this->_invOrder[index];};
    void setPoint(const int& index, const point_type& point) {this->_invOrder[index] = point;};
  };
  template<typename Point_, typename Value_ = ALE::Point, typename Alloc_ = malloc_allocator<Point_> >
  class IGlobalOrder : public IUniformSection<Point_, Value_, 1, Alloc_> {
  public:
    typedef IUniformSection<Point_, Value_, 1, Alloc_> base_type;
    typedef typename base_type::point_type             point_type;
    typedef typename base_type::value_type             value_type;
    typedef typename base_type::atlas_type             atlas_type;
  protected:
    int  _localSize;
    int *_offsets;
  public:
    IGlobalOrder(MPI_Comm comm, const int debug = 0) : IUniformSection<Point_, Value_, 1, Alloc_>(comm, debug), _localSize(0) {
      this->_offsets    = new int[this->commSize()+1];
      this->_offsets[0] = 0;
    };
    ~IGlobalOrder() {
      delete [] this->_offsets;
    };
  public: // Sizes
    int        getLocalSize() const {return this->_localSize;};
    void       setLocalSize(const int size) {this->_localSize = size;};
    int        getGlobalSize() const {return this->_offsets[this->commSize()];};
    int        getGlobalOffset(const int p) const {return this->_offsets[p];};
    const int *getGlobalOffsets() const {return this->_offsets;};
    void       setGlobalOffsets(const int offsets[]) {
      for(int p = 0; p <= this->commSize(); ++p) {
        this->_offsets[p] = offsets[p];
      }
    };
  public: // Indices
    virtual int getIndex(const point_type& p) {
      const int idx = this->restrictPoint(p)[0].first;
      if (idx >= 0) {
        return idx;
      }
      return -(idx+1);
    };
    virtual void setIndex(const point_type& p, const int index) {
      const value_type idx(index, this->restrictPoint(p)[0].second);
      this->updatePoint(p, &idx);
    };
    virtual bool isLocal(const point_type& p) {return this->restrictPoint(p)[0].first >= 0;};
    virtual bool isRemote(const point_type& p) {return this->restrictPoint(p)[0].first < 0;};
  };
  template<typename Bundle_, typename Value_ = int, typename Alloc_ = typename Bundle_::alloc_type>
  class INumberingFactory : public ALE::ParallelObject {
  public:
    typedef Bundle_                                                                              bundle_type;
    typedef typename bundle_type::point_type                                                     point_type;
    typedef Value_                                                                               value_type;
    typedef Alloc_                                                                               alloc_type;
    typedef INumbering<point_type, value_type, alloc_type>                                       numbering_type;
    typedef std::map<bundle_type*, std::map<std::string, std::map<int, Obj<numbering_type> > > > numberings_type;
    typedef typename ALE::Pair<value_type, value_type>                                           oValue_type;
    typedef typename alloc_type::template rebind<oValue_type>::other                             oAlloc_type;
    typedef IGlobalOrder<point_type, oValue_type, oAlloc_type>                                   order_type;
    typedef std::map<bundle_type*, std::map<std::string, Obj<order_type> > >                     orders_type;
    typedef typename bundle_type::send_overlap_type                                              send_overlap_type;
    typedef typename bundle_type::recv_overlap_type                                              recv_overlap_type;
  protected:
    numberings_type   _localNumberings;
    numberings_type   _numberings;
    orders_type       _orders;
    const value_type  _unknownNumber;
    const oValue_type _unknownOrder;
  protected:
    INumberingFactory(MPI_Comm comm, const int debug = 0) : ALE::ParallelObject(comm, debug), _unknownNumber(-1), _unknownOrder(-1, 0) {};
  public:
    ~INumberingFactory() {};
  public:
    static const INumberingFactory& singleton(MPI_Comm comm, const int debug, bool cleanup = false) {
      static INumberingFactory *_singleton = NULL;

      if (cleanup) {
        if (debug) {std::cout << "Destroying NumberingFactory" << std::endl;}
        if (_singleton) {delete _singleton;}
        _singleton = NULL;
      } else if (_singleton == NULL) {
        if (debug) {std::cout << "Creating new NumberingFactory" << std::endl;}
        _singleton = new INumberingFactory(comm, debug);
      }
      return *_singleton;
    };
    void clear() {
      this->_localNumberings.clear();
      this->_numberings.clear();
      this->_orders.clear();
    };
  protected: // Local numberings
    // Number all local points
    //   points in the overlap are only numbered by the owner with the lowest rank
    template<typename Sequence_>
    void constructLocalNumbering(const Obj<numbering_type>& numbering, const Obj<send_overlap_type>& sendOverlap, const Obj<Sequence_>& points) {
      const int debug = sendOverlap->debug();
      int localSize = 0;

      if (debug) {std::cout << "["<<numbering->commRank()<<"] Constructing local numbering" << std::endl;}
      numbering->setChart(typename order_type::chart_type(*std::min_element(points->begin(), points->end()), *std::max_element(points->begin(), points->end())+1));
      numbering->setFiberDimension(points, 1);
      numbering->allocatePoint();
      for(typename Sequence_::iterator l_iter = points->begin(); l_iter != points->end(); ++l_iter) {
        value_type val;

        if (debug) {std::cout << "["<<numbering->commRank()<<"]   Checking point " << *l_iter << std::endl;}
        if (sendOverlap->capContains(*l_iter)) {
          const Obj<typename send_overlap_type::traits::supportSequence>& sendPatches = sendOverlap->support(*l_iter);
          int minRank = sendOverlap->commSize();

          for(typename send_overlap_type::traits::supportSequence::iterator p_iter = sendPatches->begin(); p_iter != sendPatches->end(); ++p_iter) {
            if (*p_iter < minRank) minRank = *p_iter;
          }
          if (minRank < sendOverlap->commRank()) {
            if (debug) {std::cout << "["<<numbering->commRank()<<"]     remote point, on proc " << minRank << std::endl;}
            val = this->_unknownNumber;
          } else {
            if (debug) {std::cout << "["<<numbering->commRank()<<"]     local point" << std::endl;}
            val = localSize++;
          }
        } else {
          if (debug) {std::cout << "["<<numbering->commRank()<<"]     local point" << std::endl;}
          val = localSize++;
        }
        if (debug) {std::cout << "["<<numbering->commRank()<<"]     has number " << val << std::endl;}
        numbering->updatePoint(*l_iter, &val);
      }
      if (debug) {std::cout << "["<<numbering->commRank()<<"]   local points" << std::endl;}
      numbering->setLocalSize(localSize);
    };
    // Order all local points
    //   points in the overlap are only ordered by the owner with the lowest rank
    template<typename Sequence_, typename Section_>
    void constructLocalOrder(const Obj<order_type>& order, const Obj<send_overlap_type>& sendOverlap, const Sequence_& points, const Obj<Section_>& section) {
      int localSize = 0;

      ///std::cout << "["<<order->commRank()<<"] Constructing local ordering" << std::endl;
      order->setChart(typename order_type::chart_type(*std::min_element(points.begin(), points.end()), *std::max_element(points.begin(), points.end())+1));
      for(typename Sequence_::const_iterator l_iter = points.begin(); l_iter != points.end(); ++l_iter) {
        order->setFiberDimension(*l_iter, 1);
      }
      order->allocatePoint();
      for(typename Sequence_::const_iterator l_iter = points.begin(); l_iter != points.end(); ++l_iter) {
        oValue_type val;

        ///std::cout << "["<<order->commRank()<<"]   Checking point " << *l_iter << std::endl;
        if (sendOverlap->capContains(*l_iter)) {
          const Obj<typename send_overlap_type::traits::supportSequence>& sendPatches = sendOverlap->support(*l_iter);
          int minRank = sendOverlap->commSize();

          for(typename send_overlap_type::traits::supportSequence::iterator p_iter = sendPatches->begin(); p_iter != sendPatches->end(); ++p_iter) {
            if (*p_iter < minRank) minRank = *p_iter;
          }
          if (minRank < sendOverlap->commRank()) {
            ///std::cout << "["<<order->commRank()<<"]     remote point, on proc " << minRank << std::endl;
            val = this->_unknownOrder;
          } else {
            ///std::cout << "["<<order->commRank()<<"]     local point" << std::endl;
            val.first  = localSize;
            val.second = section->getConstrainedFiberDimension(*l_iter);
          }
        } else {
          ///std::cout << "["<<order->commRank()<<"]     local point" << std::endl;
          val.first  = localSize;
          val.second = section->getConstrainedFiberDimension(*l_iter);
        }
        ///std::cout << "["<<order->commRank()<<"]     has offset " << val.prefix << " and size " << val.index << std::endl;
        localSize += val.second;
        order->updatePoint(*l_iter, &val);
      }
      ///std::cout << "["<<order->commRank()<<"]   local size" << std::endl;
      order->setLocalSize(localSize);
    };
  protected: // Global offsets
    // Calculate process offsets
    template<typename Numbering>
    void calculateOffsets(const Obj<Numbering>& numbering) {
      int  localSize = numbering->getLocalSize();
      int *offsets   = new int[numbering->commSize()+1];

      offsets[0] = 0;
      MPI_Allgather(&localSize, 1, MPI_INT, &(offsets[1]), 1, MPI_INT, numbering->comm());
      for(int p = 2; p <= numbering->commSize(); p++) {
        offsets[p] += offsets[p-1];
      }
      numbering->setGlobalOffsets(offsets);
      delete [] offsets;
    };
    // Update local offsets based upon process offsets
    template<typename Numbering, typename Sequence>
    void updateOrder(const Obj<Numbering>& numbering, Sequence& points) {
      const typename Numbering::value_type val = numbering->getGlobalOffset(numbering->commRank());

      for(typename Sequence::const_iterator l_iter = points.begin(); l_iter != points.end(); ++l_iter) {
        if (numbering->isLocal(*l_iter)) {
          numbering->updateAddPoint(*l_iter, &val);
        }
      }
    };
    template<typename OverlapSection, typename RecvOverlap>
    static void fuseNumbering(const Obj<OverlapSection>& overlapSection, const Obj<RecvOverlap>& recvOverlap, const Obj<numbering_type>& numbering) {
      typedef typename OverlapSection::point_type overlap_point_type;
      const Obj<typename RecvOverlap::traits::baseSequence>      rPoints = recvOverlap->base();
      const typename RecvOverlap::traits::baseSequence::iterator rEnd    = rPoints->end();
      const int                                                  debug   = numbering->debug();
      const bool                                                 allowDuplicates = false;

      numbering->reallocatePoint(rPoints->begin(), rEnd, Identity<typename recv_overlap_type::target_type>());
      for(typename RecvOverlap::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rEnd; ++p_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>& ranks      = recvOverlap->cone(*p_iter);
        const typename recv_overlap_type::target_type&               localPoint = *p_iter;

        for(typename recv_overlap_type::traits::coneSequence::iterator r_iter = ranks->begin(); r_iter != ranks->end(); ++r_iter) {
          const typename recv_overlap_type::target_type&       remotePoint = r_iter.color();
          const int                                            rank        = *r_iter;
          const int                                            size        = overlapSection->getFiberDimension(overlap_point_type(rank, remotePoint));
          const typename OverlapSection::value_type           *values      = overlapSection->restrictPoint(overlap_point_type(rank, remotePoint));

          if (size == 0)             continue;
          if (debug) {std::cout << "["<<numbering->commRank()<<"]     local point " << localPoint << " remote point " << remotePoint << " number " << values[0] << std::endl;}
          if (values[0] >= 0) {
            if (debug) {std::cout << "["<<numbering->commRank()<<"] local point " << localPoint << " dim " << numbering->getAtlas()->getFiberDimension(localPoint) << std::endl;}
            if (numbering->isLocal(localPoint) && !allowDuplicates) {
              ostringstream msg;
              msg << "["<<numbering->commRank()<<"]Multiple indices for local point " << localPoint << " remote point " << remotePoint << " from " << rank << " with index " << values[0];
              throw ALE::Exception(msg.str().c_str());
            }
            if (numbering->getAtlas()->getFiberDimension(localPoint) == 0) {
              ostringstream msg;
              msg << "["<<numbering->commRank()<<"]Unexpected local point " << localPoint << " remote point " << remotePoint << " from " << rank << " with index " << values[0];
              throw ALE::Exception(msg.str().c_str());
            }
            const typename numbering_type::value_type val = -(values[0]+1);
            numbering->updatePoint(localPoint, &val);
          }
        }
      }
    };
    template<typename OverlapSection, typename RecvOverlap>
    static void fuse(const Obj<OverlapSection>& overlapSection, const Obj<RecvOverlap>& recvOverlap, const Obj<order_type>& order) {
      typedef typename OverlapSection::point_type overlap_point_type;
      const Obj<typename RecvOverlap::traits::baseSequence>      rPoints = recvOverlap->base();
      const typename RecvOverlap::traits::baseSequence::iterator rEnd    = rPoints->end();
      const bool                                                 allowDuplicates = false;

      order->reallocatePoint(rPoints->begin(), rEnd, Identity<typename recv_overlap_type::target_type>());
      for(typename RecvOverlap::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rEnd; ++p_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>& ranks      = recvOverlap->cone(*p_iter);
        const typename recv_overlap_type::target_type&               localPoint = *p_iter;

        for(typename recv_overlap_type::traits::coneSequence::iterator r_iter = ranks->begin(); r_iter != ranks->end(); ++r_iter) {
          const typename recv_overlap_type::target_type&       remotePoint = r_iter.color();
          const int                                            rank        = *r_iter;
          const int                                            size        = overlapSection->getFiberDimension(overlap_point_type(rank, remotePoint));
          const typename OverlapSection::value_type           *values      = overlapSection->restrictPoint(overlap_point_type(rank, remotePoint));

          if (size == 0)             continue;
          if (values[0].second == 0) continue;
          if (values[0].first >= 0) {
            if (order->isLocal(localPoint)) {
              if (!allowDuplicates) {
                ostringstream msg;
                msg << "["<<order->commRank()<<"]Multiple indices for local point " << localPoint << " remote point " << remotePoint << " from " << rank << " with index " << values[0];
                throw ALE::Exception(msg.str().c_str());
              }
              continue;
            }
            const typename order_type::value_type val(-(values[0].first+1), values[0].second);
            order->updatePoint(localPoint, &val);
          } else {
            if (order->isLocal(localPoint)) continue;
            order->updatePoint(localPoint, values);
          }
        }
      }
    };
  public: // Completion
    void completeNumbering(const Obj<numbering_type>& numbering, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, bool allowDuplicates = false) {
#if 0
      ALE::Completion::completeSection(sendOverlap, recvOverlap, numbering, numbering);
#else
      typedef ALE::UniformSection<ALE::Pair<int, typename send_overlap_type::source_type>, typename numbering_type::value_type> OverlapSection;
      Obj<OverlapSection> overlapSection = new OverlapSection(numbering->comm(), numbering->debug());

      if (numbering->debug()) {numbering->view("Local Numbering");}
      ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, numbering, overlapSection);
      if (overlapSection->debug()) {overlapSection->view("Overlap Section");}
      fuseNumbering(overlapSection, recvOverlap, numbering);
      if (numbering->debug()) {numbering->view("Global Numbering");}
#endif
    };
    void completeOrder(const Obj<order_type>& order, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, bool allowDuplicates = false) {
#if 0
      ALE::Completion::completeSection(sendOverlap, recvOverlap, order, order);
#else
      typedef ALE::UniformSection<ALE::Pair<int, typename send_overlap_type::source_type>, typename order_type::value_type> OverlapSection;
      Obj<OverlapSection> overlapSection = new OverlapSection(order->comm(), order->debug());

      if (order->debug()) {order->view("Local Order");}
      ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, order, overlapSection);
      if (overlapSection->debug()) {overlapSection->view("Overlap Section");}
      fuse(overlapSection, recvOverlap, order);
      if (order->debug()) {order->view("Global Order");}
#endif
    };
  public: // Construct a full global numberings
    template<typename Sequence>
    void constructNumbering(const Obj<numbering_type>& numbering, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const Obj<Sequence>& points) {
      this->constructLocalNumbering(numbering, sendOverlap, points);
      this->calculateOffsets(numbering);
      this->updateOrder(numbering, *points.ptr());
      this->completeNumbering(numbering, sendOverlap, recvOverlap);
    };
    template<typename Sequence, typename Section>
    void constructOrder(const Obj<order_type>& order, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const Sequence& points, const Obj<Section>& section) {
      this->constructLocalOrder(order, sendOverlap, points, section);
      this->calculateOffsets(order);
      this->updateOrder(order, points);
      this->completeOrder(order, sendOverlap, recvOverlap);
    };
    template<typename Sequence, typename Section>
    void constructOrder(const Obj<order_type>& order, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const Obj<Sequence>& points, const Obj<Section>& section) {
      this->constructLocalOrder(order, sendOverlap, *points.ptr(), section);
      this->calculateOffsets(order);
      this->updateOrder(order, *points.ptr());
      this->completeOrder(order, sendOverlap, recvOverlap);
    };
  public: // Real interface
    template<typename ABundle_>
    const Obj<numbering_type>& getLocalNumbering(const Obj<ABundle_>& bundle, const int depth) {
      if ((this->_localNumberings.find(bundle.ptr()) == this->_localNumberings.end()) ||
          (this->_localNumberings[bundle.ptr()].find("depth") == this->_localNumberings[bundle.ptr()].end()) ||
          (this->_localNumberings[bundle.ptr()]["depth"].find(depth) == this->_localNumberings[bundle.ptr()]["depth"].end())) {
        Obj<numbering_type>    numbering   = new numbering_type(bundle->comm(), bundle->debug());
        Obj<send_overlap_type> sendOverlap = new send_overlap_type(bundle->comm(), bundle->debug());

        this->constructLocalNumbering(numbering, sendOverlap, bundle->depthStratum(depth));
        if (this->_debug) {std::cout << "Creating new local numbering: ptr " << bundle.ptr() << " depth " << depth << std::endl;}
        this->_localNumberings[bundle.ptr()]["depth"][depth] = numbering;
      } else {
        if (this->_debug) {std::cout << "Using old local numbering: ptr " << bundle.ptr() << " depth " << depth << std::endl;}
      }
      return this->_localNumberings[bundle.ptr()]["depth"][depth];
    };
    template<typename ABundle_>
    const Obj<numbering_type>& getNumbering(const Obj<ABundle_>& bundle, const int depth) {
      if ((this->_numberings.find(bundle.ptr()) == this->_numberings.end()) ||
          (this->_numberings[bundle.ptr()].find("depth") == this->_numberings[bundle.ptr()].end()) ||
          (this->_numberings[bundle.ptr()]["depth"].find(depth) == this->_numberings[bundle.ptr()]["depth"].end())) {
        bundle->constructOverlap();
        Obj<numbering_type>    numbering   = new numbering_type(bundle->comm(), bundle->debug());
        Obj<send_overlap_type> sendOverlap = bundle->getSendOverlap();
        Obj<recv_overlap_type> recvOverlap = bundle->getRecvOverlap();

        this->constructNumbering(numbering, sendOverlap, recvOverlap, bundle->depthStratum(depth));
        if (this->_debug) {std::cout << "Creating new numbering: depth " << depth << std::endl;}
        this->_numberings[bundle.ptr()]["depth"][depth] = numbering;
      } else {
        if (this->_debug) {std::cout << "["<<bundle->commRank()<<"]Using old numbering: depth " << depth << std::endl;}
      }
      return this->_numberings[bundle.ptr()]["depth"][depth];
    };
    template<typename ABundle_>
    const Obj<numbering_type>& getNumbering(const Obj<ABundle_>& bundle, const std::string& labelname, const int value) {
      if ((this->_numberings.find(bundle.ptr()) == this->_numberings.end()) ||
          (this->_numberings[bundle.ptr()].find(labelname) == this->_numberings[bundle.ptr()].end()) ||
          (this->_numberings[bundle.ptr()][labelname].find(value) == this->_numberings[bundle.ptr()][labelname].end())) {
        bundle->constructOverlap();
        Obj<numbering_type>    numbering   = new numbering_type(bundle->comm(), bundle->debug());
        Obj<send_overlap_type> sendOverlap = bundle->getSendOverlap();
        Obj<recv_overlap_type> recvOverlap = bundle->getRecvOverlap();

        numbering->setDefault(&_unknownNumber);
        if (this->_debug) {std::cout << "["<<bundle->commRank()<<"]Creating new numbering: " << labelname << " value " << value << std::endl;}
        this->constructNumbering(numbering, sendOverlap, recvOverlap, bundle->getLabelStratum(labelname, value));
        this->_numberings[bundle.ptr()][labelname][value] = numbering;
      } else {
        if (this->_debug) {std::cout << "["<<bundle->commRank()<<"]Using old numbering: " << labelname << " value " << value << std::endl;}
      }
      return this->_numberings[bundle.ptr()][labelname][value];
    };
    template<typename ABundle_, typename Section_>
    const Obj<order_type>& getGlobalOrder(const Obj<ABundle_>& bundle, const std::string& name, const Obj<Section_>& section) {
      if ((this->_orders.find(bundle.ptr()) == this->_orders.end()) ||
          (this->_orders[bundle.ptr()].find(name) == this->_orders[bundle.ptr()].end())) {
        bundle->constructOverlap();
        Obj<order_type>        order       = new order_type(bundle->comm(), bundle->debug());
        Obj<send_overlap_type> sendOverlap = bundle->getSendOverlap();
        Obj<recv_overlap_type> recvOverlap = bundle->getRecvOverlap();

        order->setDefault(&_unknownOrder);
        if (this->_debug) {std::cout << "["<<bundle->commRank()<<"]Creating new global order: " << name << std::endl;}
        this->constructOrder(order, sendOverlap, recvOverlap, section->getChart(), section);
        this->_orders[bundle.ptr()][name] = order;
      } else {
        if (this->_debug) {std::cout << "["<<bundle->commRank()<<"]Using old global order: " << name << std::endl;}
      }
      return this->_orders[bundle.ptr()][name];
    };
    template<typename ABundle_>
    void setGlobalOrder(const Obj<ABundle_>& bundle, const std::string& name, const Obj<order_type>& order) {
      this->_orders[bundle.ptr()][name] = order;
    };
  };
}
#endif