This file is indexed.

/usr/lib/petscdir/3.1/include/sieve/Distribution.hh is in libpetsc3.1-dev 3.1.dfsg-11ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
#ifndef included_ALE_Distribution_hh
#define included_ALE_Distribution_hh

#ifndef  included_ALE_Mesh_hh
#include <Mesh.hh>
#endif

#ifndef  included_ALE_Completion_hh
#include <Completion.hh>
#endif

// Attempt to unify all of the distribution mechanisms:
//   one to many  (distributeMesh)
//   many to one  (unifyMesh)
//   many to many (Numbering)
// as well as things being distributed
//   Section
//   Sieve        (This sends two sections, the points and cones)
//   Numbering    (Should be an integer section)
//   Global Order (should be an integer section with extra methods)
//
// 0) Create the new object to hold the communicated data
//
// 1) Create Overlap
//    There may be special ways to do this based upon what we know at the time
//
// 2) Create send and receive sections over the interface
//    These have a flat topology now, consisting only of the overlap nodes
//    We could make a full topology on the overlap (maybe it is necessary for higher order)
//
// 3) Communication section
//    Create sizer sections on interface (uses constant sizer)
//    Communicate sizes on interface (uses custom filler)
//      Fill send section
//      sendSection->startCommunication();
//      recvSection->startCommunication();
//      sendSection->endCommunication();
//      recvSection->endCommunication();
//
//    Create section on interface (uses previous sizer)
//    Communicate values on interface (uses custom filler)
//      Same stuff as above
//    
// 4) Update new section with old local values (can be done in between the communication?)
//    Loop over patches in new topology
//      Loop over chart from patch in old atlas
//        If this point is in the new sieve from patch
//          Set to old fiber dimension
//    Order and allocate new section
//    Repeat loop, but update values
//
// 5) Update new section with old received values
//    Loop over patches in discrete topology of receive section (these are ranks)
//      Loop over base of discrete sieve (we should transform this to a chart to match above)
//        Get new patch from overlap, or should the receive patches be <rank, patch>?
//        Guaranteed to be in the new sieve from patch (but we could check anyway)
//          Set to recevied fiber dimension
//    Order and allocate new section
//    Repeat loop, but update values
//
// 6) Synchronize PETSc tags (can I get around this?)
namespace ALE {
  template<typename Mesh, typename Partitioner = ALE::Partitioner<> >
  class DistributionNew {
  public:
    typedef Partitioner                                   partitioner_type;
    typedef typename Mesh::point_type                     point_type;
    typedef OrientedPoint<point_type>                     oriented_point_type;
    typedef typename Partitioner::part_type               rank_type;
    typedef ALE::ISection<rank_type, point_type>          partition_type;
    typedef ALE::Section<ALE::Pair<int, point_type>, point_type>          cones_type;
    typedef ALE::Section<ALE::Pair<int, point_type>, oriented_point_type> oriented_cones_type;
  public:
    template<typename Sieve, typename NewSieve, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<cones_type> completeCones(const Obj<Sieve>& sieve, const Obj<NewSieve>& newSieve, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::ConeSection<Sieve> cones_wrapper_type;
      Obj<cones_wrapper_type> cones        = new cones_wrapper_type(sieve);
      Obj<cones_type>         overlapCones = new cones_type(sieve->comm(), sieve->debug());

      ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
      if (sieve->debug()) {overlapCones->view("Overlap Cones");}
      // Inserts cones into parallelMesh (must renumber here)
      ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, renumbering, newSieve);
      return overlapCones;
    };
    template<typename Sieve, typename NewSieve, typename SendOverlap, typename RecvOverlap>
    static Obj<oriented_cones_type> completeConesV(const Obj<Sieve>& sieve, const Obj<NewSieve>& newSieve, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::OrientedConeSectionV<Sieve> oriented_cones_wrapper_type;
      Obj<oriented_cones_wrapper_type> cones        = new oriented_cones_wrapper_type(sieve);
      Obj<oriented_cones_type>         overlapCones = new oriented_cones_type(sieve->comm(), sieve->debug());

      ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
      if (sieve->debug()) {overlapCones->view("Overlap Cones");}
      ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, newSieve);
      return overlapCones;
    };
    template<typename Sieve, typename NewSieve, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<oriented_cones_type> completeConesV(const Obj<Sieve>& sieve, const Obj<NewSieve>& newSieve, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::OrientedConeSectionV<Sieve> oriented_cones_wrapper_type;
      Obj<oriented_cones_wrapper_type> cones        = new oriented_cones_wrapper_type(sieve);
      Obj<oriented_cones_type>         overlapCones = new oriented_cones_type(sieve->comm(), sieve->debug());

      ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
      if (sieve->debug()) {overlapCones->view("Overlap Cones");}
      // Inserts cones into parallelMesh (must renumber here)
      ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, renumbering, newSieve);
      return overlapCones;
    };
    // Given a partition of sieve points, copy the mesh pieces to each process and fuse into the new mesh
    //   Return overlaps for the cone communication
    template<typename Renumbering, typename NewMesh, typename SendOverlap, typename RecvOverlap>
    static void completeMesh(const Obj<Mesh>& mesh, const Obj<partition_type>& partition, Renumbering& renumbering, const Obj<NewMesh>& newMesh, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_send_overlap_type;
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_recv_overlap_type;
      const Obj<part_send_overlap_type> sendOverlap = new part_send_overlap_type(partition->comm());
      const Obj<part_recv_overlap_type> recvOverlap = new part_recv_overlap_type(partition->comm());

      // Create overlap for partition points
      //   TODO: This needs to be generalized for multiple sources
      Partitioner::createDistributionPartOverlap(sendOverlap, recvOverlap);
      // Communicate partition pieces to processes
      Obj<partition_type> overlapPartition = new partition_type(partition->comm(), partition->debug());

      overlapPartition->setChart(partition->getChart());
      ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, partition, overlapPartition);
      // Create renumbering
      const int         rank           = partition->commRank();
      const point_type *localPoints    = partition->restrictPoint(rank);
      const int         numLocalPoints = partition->getFiberDimension(rank);

      for(point_type p = 0; p < numLocalPoints; ++p) {
        renumbering[localPoints[p]] = p;
      }
      const Obj<typename part_recv_overlap_type::traits::baseSequence> rPoints    = recvOverlap->base();
      point_type                                                       localPoint = numLocalPoints;

      for(typename part_recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
        const Obj<typename part_recv_overlap_type::coneSequence>& ranks           = recvOverlap->cone(*p_iter);
        const rank_type&                                          remotePartPoint = ranks->begin().color();
        const point_type                                         *points          = overlapPartition->restrictPoint(remotePartPoint);
        const int                                                 numPoints       = overlapPartition->getFiberDimension(remotePartPoint);

        for(int i = 0; i < numPoints; ++i) {
          renumbering[points[i]] = localPoint++;
        }
      }
      // Create mesh overlap from partition overlap
      //   TODO: Generalize to redistribution (receive from multiple sources)
      Partitioner::createDistributionMeshOverlap(partition, recvOverlap, renumbering, overlapPartition, sendMeshOverlap, recvMeshOverlap);
      // Send cones
      completeCones(mesh->getSieve(), newMesh->getSieve(), renumbering, sendMeshOverlap, recvMeshOverlap);
    };
    template<typename Renumbering, typename NewMesh, typename SendOverlap, typename RecvOverlap>
    static void completeBaseV(const Obj<Mesh>& mesh, const Obj<partition_type>& partition, Renumbering& renumbering, const Obj<NewMesh>& newMesh, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_send_overlap_type;
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_recv_overlap_type;
      const Obj<part_send_overlap_type> sendOverlap = new part_send_overlap_type(partition->comm());
      const Obj<part_recv_overlap_type> recvOverlap = new part_recv_overlap_type(partition->comm());

      // Create overlap for partition points
      //   TODO: This needs to be generalized for multiple sources
      Partitioner::createDistributionPartOverlap(sendOverlap, recvOverlap);
      // Communicate partition pieces to processes
      Obj<partition_type> overlapPartition = new partition_type(partition->comm(), partition->debug());

      overlapPartition->setChart(partition->getChart());
      ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, partition, overlapPartition);
      // Create renumbering
      const int         rank           = partition->commRank();
      const point_type *localPoints    = partition->restrictPoint(rank);
      const int         numLocalPoints = partition->getFiberDimension(rank);

      for(point_type p = 0; p < numLocalPoints; ++p) {
        ///std::cout <<"["<<partition->commRank()<<"]: local renumbering " << localPoints[p] << " --> " << p << std::endl;
        renumbering[localPoints[p]] = p;
      }
      const Obj<typename part_recv_overlap_type::traits::baseSequence> rPoints    = recvOverlap->base();
      point_type                                                       localPoint = numLocalPoints;

      for(typename part_recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
        const Obj<typename part_recv_overlap_type::coneSequence>& ranks           = recvOverlap->cone(*p_iter);
        const rank_type&                                          remotePartPoint = ranks->begin().color();
        const point_type                                         *points          = overlapPartition->restrictPoint(remotePartPoint);
        const int                                                 numPoints       = overlapPartition->getFiberDimension(remotePartPoint);

        for(int i = 0; i < numPoints; ++i) {
          ///std::cout <<"["<<partition->commRank()<<"]: remote renumbering " << points[i] << " --> " << localPoint << std::endl;
          renumbering[points[i]] = localPoint++;
        }
      }
      newMesh->getSieve()->setChart(typename NewMesh::sieve_type::chart_type(0, renumbering.size()));
      // Create mesh overlap from partition overlap
      //   TODO: Generalize to redistribution (receive from multiple sources)
      Partitioner::createDistributionMeshOverlap(partition, recvOverlap, renumbering, overlapPartition, sendMeshOverlap, recvMeshOverlap);
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> distributeMesh(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap, const int height = 0) {
      const Obj<partition_type> cellPartition = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<partition_type> partition     = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());

      // Create the cell partition
      Partitioner::createPartition(mesh, cellPartition, height);
      if (mesh->debug()) {
        PetscViewer    viewer;
        PetscErrorCode ierr;

        cellPartition->view("Cell Partition");
        ierr = PetscViewerCreate(mesh->comm(), &viewer);CHKERRXX(ierr);
        ierr = PetscViewerSetType(viewer, PETSC_VIEWER_ASCII);CHKERRXX(ierr);
        ierr = PetscViewerFileSetName(viewer, "mesh.vtk");CHKERRXX(ierr);
        ///TODO ierr = MeshView_Sieve_Ascii(mesh, cellPartition, viewer);CHKERRXX(ierr);
        ierr = PetscViewerDestroy(viewer);CHKERRXX(ierr);
      }
      // Close the partition over sieve points
      Partitioner::createPartitionClosure(mesh, cellPartition, partition, height);
      if (mesh->debug()) {partition->view("Partition");}
      // Create the remote meshes
      completeMesh(mesh, partition, renumbering, newMesh, sendMeshOverlap, recvMeshOverlap);
      // Create the local mesh
      Partitioner::createLocalMesh(mesh, partition, renumbering, newMesh, height);
      newMesh->stratify();
      return partition;
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> distributeMeshAndSections(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap, const int height = 0) {
      Obj<partition_type> partition = distributeMesh(mesh, newMesh, renumbering, sendMeshOverlap, recvMeshOverlap, height);

      // Distribute the coordinates
      const Obj<typename Mesh::real_section_type>& coordinates         = mesh->getRealSection("coordinates");
      const Obj<typename Mesh::real_section_type>& parallelCoordinates = newMesh->getRealSection("coordinates");

      newMesh->setupCoordinates(parallelCoordinates);
      distributeSection(coordinates, partition, renumbering, sendMeshOverlap, recvMeshOverlap, parallelCoordinates);
      // Distribute other sections
      if (mesh->getRealSections()->size() > 1) {
        Obj<std::set<std::string> > names = mesh->getRealSections();

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          if (*n_iter == "coordinates")   continue;
          distributeSection(mesh->getRealSection(*n_iter), partition, renumbering, sendMeshOverlap, recvMeshOverlap, newMesh->getRealSection(*n_iter));
        }
      }
      if (mesh->getIntSections()->size() > 0) {
        Obj<std::set<std::string> > names = mesh->getIntSections();

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          distributeSection(mesh->getIntSection(*n_iter), partition, renumbering, sendMeshOverlap, recvMeshOverlap, newMesh->getIntSection(*n_iter));
        }
      }
      if (mesh->getArrowSections()->size() > 1) {
        throw ALE::Exception("Need to distribute more arrow sections");
      }
      // Distribute labels
      const typename Mesh::labels_type& labels = mesh->getLabels();

      for(typename Mesh::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (newMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename Mesh::label_type>& origLabel = l_iter->second;
        const Obj<typename Mesh::label_type>& newLabel  = newMesh->createLabel(l_iter->first);
        // Get remote labels
        ALE::New::Completion<Mesh,typename Mesh::point_type>::scatterCones(origLabel, newLabel, sendMeshOverlap, recvMeshOverlap, renumbering);
        // Create local label
        newLabel->add(origLabel, newMesh->getSieve(), renumbering);
      }
      return partition;
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> distributeMeshV(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap, const int height = 0) {
      const Obj<partition_type> cellPartition = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<partition_type> partition     = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());

      PETSc::Log::Event("DistributeMesh").begin();
      // Create the cell partition
      Partitioner::createPartitionV(mesh, cellPartition, height);
      if (mesh->debug()) {
        PetscViewer    viewer;
        PetscErrorCode ierr;

        cellPartition->view("Cell Partition");
        ierr = PetscViewerCreate(mesh->comm(), &viewer);CHKERRXX(ierr);
        ierr = PetscViewerSetType(viewer, PETSC_VIEWER_ASCII);CHKERRXX(ierr);
        ierr = PetscViewerFileSetName(viewer, "mesh.vtk");CHKERRXX(ierr);
        ///TODO ierr = MeshView_Sieve_Ascii(mesh, cellPartition, viewer);CHKERRXX(ierr);
        ierr = PetscViewerDestroy(viewer);CHKERRXX(ierr);
      }
      // Close the partition over sieve points
      Partitioner::createPartitionClosureV(mesh, cellPartition, partition, height);
      if (mesh->debug()) {partition->view("Partition");}
      // Create the remote bases
      completeBaseV(mesh, partition, renumbering, newMesh, sendMeshOverlap, recvMeshOverlap);
      // Size the local mesh
      Partitioner::sizeLocalMeshV(mesh, partition, renumbering, newMesh, height);
      // Create the remote meshes
      completeConesV(mesh->getSieve(), newMesh->getSieve(), renumbering, sendMeshOverlap, recvMeshOverlap);
      // Create the local mesh
      Partitioner::createLocalMeshV(mesh, partition, renumbering, newMesh, height);
      newMesh->getSieve()->symmetrize();
      newMesh->stratify();
      PETSc::Log::Event("DistributeMesh").end();
      return partition;
    };
    // distributeMeshV:
    //   createPartitionV (can be dumb)
    //   createPartitionClosureV (should be low memory)
    //   completeBaseV (???)
    //     Partitioner::createDistributionPartOverlap (low memory)
    //     copy points to partitions (uses small overlap and fake sections)
    //     renumber (map is potentially big, can measure)
    //     Partitioner::createDistributionMeshOverlap (should be large for distribution)
    //       sendMeshOverlap is localPoint--- remotePoint --->remoteRank
    //       recvMeshOverlap is remoteRank--- remotePoint --->localPoint
    //   sizeLocalMeshV (should be low memory)
    //   completeConesV (???)
    //   createLocalMesh (should be low memory)
    //   symmetrize
    //   stratify
    template<typename NewMesh>
    static void distributeMeshAndSectionsV(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh) {
      typedef typename Mesh::point_type point_type;

      const Obj<typename Mesh::send_overlap_type> sendMeshOverlap = new typename Mesh::send_overlap_type(mesh->comm(), mesh->debug());
      const Obj<typename Mesh::recv_overlap_type> recvMeshOverlap = new typename Mesh::recv_overlap_type(mesh->comm(), mesh->debug());
      std::map<point_type,point_type>&            renumbering     = newMesh->getRenumbering();
      // Distribute the mesh
      Obj<partition_type> partition = distributeMeshV(mesh, newMesh, renumbering, sendMeshOverlap, recvMeshOverlap);
      if (mesh->debug()) {
        std::cout << "["<<mesh->commRank()<<"]: Mesh Renumbering:" << std::endl;
        for(typename Mesh::renumbering_type::const_iterator r_iter = renumbering.begin(); r_iter != renumbering.end(); ++r_iter) {
          std::cout << "["<<mesh->commRank()<<"]:   global point " << r_iter->first << " --> " << " local point " << r_iter->second << std::endl;
        }
      }
      // Distribute the coordinates
      PETSc::Log::Event("DistributeCoords").begin();
      const Obj<typename Mesh::real_section_type>& coordinates         = mesh->getRealSection("coordinates");
      const Obj<typename Mesh::real_section_type>& parallelCoordinates = newMesh->getRealSection("coordinates");

      newMesh->setupCoordinates(parallelCoordinates);
      distributeSection(coordinates, partition, renumbering, sendMeshOverlap, recvMeshOverlap, parallelCoordinates);
      PETSc::Log::Event("DistributeCoords").end();
      // Distribute other sections
      if (mesh->getRealSections()->size() > 1) {
        PETSc::Log::Event("DistributeRealSec").begin();
        Obj<std::set<std::string> > names = mesh->getRealSections();
        int                         n     = 0;

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          if (*n_iter == "coordinates")   continue;
          std::cout << "ERROR: Did not distribute real section " << *n_iter << std::endl;
          ++n;
        }
        PETSc::Log::Event("DistributeRealSec").end();
        if (n) {throw ALE::Exception("Need to distribute more real sections");}
      }
      if (mesh->getIntSections()->size() > 0) {
        PETSc::Log::Event("DistributeIntSec").begin();
        Obj<std::set<std::string> > names = mesh->getIntSections();

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          const Obj<typename Mesh::int_section_type>& section    = mesh->getIntSection(*n_iter);
          const Obj<typename Mesh::int_section_type>& newSection = newMesh->getIntSection(*n_iter);
          
          // We assume all integer sections are complete sections
          newSection->setChart(newMesh->getSieve()->getChart());
          distributeSection(section, partition, renumbering, sendMeshOverlap, recvMeshOverlap, newSection);
        }
        PETSc::Log::Event("DistributeIntSec").end();
      }
      if (mesh->getArrowSections()->size() > 1) {
        throw ALE::Exception("Need to distribute more arrow sections");
      }
      // Distribute labels
      PETSc::Log::Event("DistributeLabels").begin();
      const typename Mesh::labels_type& labels = mesh->getLabels();

      for(typename Mesh::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (newMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename Mesh::label_type>& origLabel = l_iter->second;
        const Obj<typename Mesh::label_type>& newLabel  = newMesh->createLabel(l_iter->first);

#ifdef IMESH_NEW_LABELS
        newLabel->setChart(newMesh->getSieve()->getChart());
        // Size the local mesh
        Partitioner::sizeLocalSieveV(origLabel, partition, renumbering, newLabel);
        // Create the remote meshes
        completeConesV(origLabel, newLabel, renumbering, sendMeshOverlap, recvMeshOverlap);
        // Create the local mesh
        Partitioner::createLocalSieveV(origLabel, partition, renumbering, newLabel);
        newLabel->symmetrize();
#else
	distributeLabelV(newMesh->getSieve(), origLabel, partition, renumbering, sendMeshOverlap, recvMeshOverlap, newLabel);
#endif
      }
      PETSc::Log::Event("DistributeLabels").end();
      // Create the parallel overlap
      PETSc::Log::Event("CreateOverlap").begin();
      Obj<typename Mesh::send_overlap_type> sendParallelMeshOverlap = newMesh->getSendOverlap();
      Obj<typename Mesh::recv_overlap_type> recvParallelMeshOverlap = newMesh->getRecvOverlap();
      //   Can I figure this out in a nicer way?
      ALE::SetFromMap<std::map<point_type,point_type> > globalPoints(renumbering);

      ALE::OverlapBuilder<>::constructOverlap(globalPoints, renumbering, sendParallelMeshOverlap, recvParallelMeshOverlap);
      newMesh->setCalculatedOverlap(true);
      PETSc::Log::Event("CreateOverlap").end();
    };
    template<typename Label, typename Partition, typename Renumbering, typename SendOverlap, typename RecvOverlap, typename NewLabel>
    static void distributeLabel(const Obj<typename Mesh::sieve_type>& sieve, const Obj<Label>& l, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<NewLabel>& newL) {
      Partitioner::createLocalSifter(l, partition, renumbering, newL);
      //completeCones(l, newL, renumbering, sendMeshOverlap, recvMeshOverlap);
      {
        typedef ALE::UniformSection<point_type, int>                cones_type;
        typedef ALE::LabelSection<typename Mesh::sieve_type, Label> cones_wrapper_type;
        Obj<cones_wrapper_type> cones        = new cones_wrapper_type(sieve, l);
        Obj<cones_type>         overlapCones = new cones_type(l->comm(), l->debug());

        ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, cones, overlapCones);
        if (l->debug()) {overlapCones->view("Overlap Label Values");}
        // Inserts cones into newL (must renumber here)
        //ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvOverlap, renumbering, newSieve);
        {
	  typedef typename cones_type::point_type overlap_point_type;
          const Obj<typename RecvOverlap::traits::baseSequence>      rPoints = recvOverlap->base();
	  const typename RecvOverlap::traits::baseSequence::iterator rEnd    = rPoints->end();

          for(typename RecvOverlap::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rEnd; ++p_iter) {
            const Obj<typename RecvOverlap::coneSequence>& points       = recvOverlap->cone(*p_iter);
            const typename RecvOverlap::target_type&       localPoint   = *p_iter;
            const typename cones_type::point_type&         remotePoint  = points->begin().color();
	    const overlap_point_type                       overlapPoint = overlap_point_type(remotePoint.second, remotePoint.first);
            const int                                      size         = overlapCones->getFiberDimension(overlapPoint);
            const typename cones_type::value_type         *values       = overlapCones->restrictPoint(overlapPoint);

            newL->clearCone(localPoint);
            for(int i = 0; i < size; ++i) {newL->addCone(values[i], localPoint);}
          }
        }
      }
    };
    template<typename Label, typename Partition, typename Renumbering, typename SendOverlap, typename RecvOverlap, typename NewLabel>
    static void distributeLabelV(const Obj<typename Mesh::sieve_type>& sieve, const Obj<Label>& l, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<NewLabel>& newL) {
      Partitioner::createLocalSifter(l, partition, renumbering, newL);
      //completeCones(l, newL, renumbering, sendMeshOverlap, recvMeshOverlap);
      {
	typedef typename Label::alloc_type::template rebind<int>::other alloc_type;
	typedef LabelBaseSectionV<typename Mesh::sieve_type, Label, alloc_type> atlas_type;
        typedef ALE::UniformSection<ALE::Pair<int, point_type>, int>            cones_type;
        typedef ALE::LabelSection<typename Mesh::sieve_type, Label, alloc_type, atlas_type> cones_wrapper_type;
        Obj<cones_wrapper_type> cones        = new cones_wrapper_type(sieve, l);
        Obj<cones_type>         overlapCones = new cones_type(l->comm(), l->debug());

        ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, cones, overlapCones);
        if (l->debug()) {overlapCones->view("Overlap Label Values");}
        // Inserts cones into newL (must renumber here)
        //ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvOverlap, renumbering, newSieve);
        {
	  typedef typename cones_type::point_type overlap_point_type;
          const Obj<typename RecvOverlap::traits::baseSequence> rPoints = recvOverlap->base();

          for(typename RecvOverlap::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
            const Obj<typename RecvOverlap::coneSequence>& points       = recvOverlap->cone(*p_iter);
            const typename RecvOverlap::target_type&       localPoint   = *p_iter;
            const typename cones_type::point_type&         remotePoint  = points->begin().color();
	    const overlap_point_type                       overlapPoint = overlap_point_type(remotePoint.second, remotePoint.first);
            const int                                      size         = overlapCones->getFiberDimension(overlapPoint);
            const typename cones_type::value_type         *values       = overlapCones->restrictPoint(overlapPoint);

            newL->clearCone(localPoint);
            for(int i = 0; i < size; ++i) {newL->addCone(values[i], localPoint);}
          }
        }
      }
    };
    template<typename Section, typename Partition, typename Renumbering, typename SendOverlap, typename RecvOverlap, typename NewSection>
    static void distributeSection(const Obj<Section>& s, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<NewSection>& newS) {
      Partitioner::createLocalSection(s, partition, renumbering, newS);
      ALE::Completion::completeSection(sendOverlap, recvOverlap, s, newS);
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> unifyMesh(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      const Obj<partition_type> cellPartition = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<partition_type> partition     = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<typename Mesh::label_sequence>&     cells  = mesh->heightStratum(0);
      const typename Mesh::label_sequence::iterator cEnd   = cells->end();
      typename Mesh::point_type                    *values = new typename Mesh::point_type[cells->size()];
      int                                           c      = 0;

      cellPartition->setFiberDimension(0, cells->size());
      cellPartition->allocatePoint();
      for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter, ++c) {
        values[c] = *c_iter;
      }
      cellPartition->updatePoint(0, values);
      delete [] values;
      // Close the partition over sieve points
      Partitioner::createPartitionClosure(mesh, cellPartition, partition);
      // Create the remote meshes
      completeMesh(mesh, partition, renumbering, newMesh, sendMeshOverlap, recvMeshOverlap);
      // Create the local mesh
      Partitioner::createLocalMesh(mesh, partition, renumbering, newMesh);
      newMesh->stratify();
      newMesh->view("Unified mesh");
      return partition;
    };
    static Obj<Mesh> unifyMesh(const Obj<Mesh>& mesh) {
      typedef ALE::Sifter<point_type,rank_type,point_type> mesh_send_overlap_type;
      typedef ALE::Sifter<rank_type,point_type,point_type> mesh_recv_overlap_type;
      const Obj<Mesh>                      newMesh         = new Mesh(mesh->comm(), mesh->getDimension(), mesh->debug());
      const Obj<typename Mesh::sieve_type> newSieve        = new typename Mesh::sieve_type(mesh->comm(), mesh->debug());
      const Obj<mesh_send_overlap_type>    sendMeshOverlap = new mesh_send_overlap_type(mesh->comm(), mesh->debug());
      const Obj<mesh_recv_overlap_type>    recvMeshOverlap = new mesh_recv_overlap_type(mesh->comm(), mesh->debug());
      std::map<point_type,point_type>      renumbering;

      newMesh->setSieve(newSieve);
      const Obj<partition_type> partition = unifyMesh(mesh, newMesh, renumbering, sendMeshOverlap, recvMeshOverlap);
      // Unify coordinates
      const Obj<typename Mesh::real_section_type>& coordinates    = mesh->getRealSection("coordinates");
      const Obj<typename Mesh::real_section_type>& newCoordinates = newMesh->getRealSection("coordinates");

      newMesh->setupCoordinates(newCoordinates);
      distributeSection(coordinates, partition, renumbering, sendMeshOverlap, recvMeshOverlap, newCoordinates);
      // Unify labels
      const typename Mesh::labels_type& labels = mesh->getLabels();

      for(typename Mesh::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (newMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename Mesh::label_type>& label    = l_iter->second;
        const Obj<typename Mesh::label_type>& newLabel = newMesh->createLabel(l_iter->first);

        //completeCones(label, newLabel, renumbering, sendMeshOverlap, recvMeshOverlap);
        {
          typedef ALE::UniformSection<point_type, int> cones_type;
          typedef ALE::LabelSection<typename Mesh::sieve_type,typename Mesh::label_type> cones_wrapper_type;
          Obj<cones_wrapper_type> cones        = new cones_wrapper_type(mesh->getSieve(), label);
          Obj<cones_type>         overlapCones = new cones_type(label->comm(), label->debug());

          ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
          if (label->debug()) {overlapCones->view("Overlap Label Values");}
          // Inserts cones into parallelMesh (must renumber here)
          //ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, renumbering, newSieve);
          {
            const Obj<typename mesh_recv_overlap_type::traits::baseSequence> rPoints = recvMeshOverlap->base();

            for(typename mesh_recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
              const Obj<typename mesh_recv_overlap_type::coneSequence>& points      = recvMeshOverlap->cone(*p_iter);
              const typename mesh_recv_overlap_type::target_type&       localPoint  = *p_iter;
              const typename cones_type::point_type&                    remotePoint = points->begin().color();
              const int                                                 size        = overlapCones->getFiberDimension(remotePoint);
              const typename cones_type::value_type                    *values      = overlapCones->restrictPoint(remotePoint);

              newLabel->clearCone(localPoint);
              for(int i = 0; i < size; ++i) {newLabel->addCone(values[i], localPoint);}
            }
          }
        }
        //newLabel->add(label, newSieve);
        Partitioner::createLocalSifter(label, partition, renumbering, newLabel);
        newLabel->view(l_iter->first.c_str());
      }
      return newMesh;
    };
  };
  template<typename Bundle_>
  class Distribution {
  public:
    typedef Bundle_                                                                     bundle_type;
    typedef typename bundle_type::sieve_type                                            sieve_type;
    typedef typename bundle_type::point_type                                            point_type;
    typedef typename bundle_type::alloc_type                                            alloc_type;
    typedef typename bundle_type::send_overlap_type                                     send_overlap_type;
    typedef typename bundle_type::recv_overlap_type                                     recv_overlap_type;
    typedef typename ALE::New::Completion<bundle_type, typename sieve_type::point_type>                            sieveCompletion;
    typedef typename ALE::New::SectionCompletion<bundle_type, typename bundle_type::real_section_type::value_type> sectionCompletion;
  public:
    #undef __FUNCT__
    #define __FUNCT__ "createPartitionOverlap"
    static void createPartitionOverlap(const Obj<bundle_type>& bundle, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      const Obj<send_overlap_type>& topSendOverlap = bundle->getSendOverlap();
      const Obj<recv_overlap_type>& topRecvOverlap = bundle->getRecvOverlap();
      const Obj<typename send_overlap_type::traits::baseSequence> base = topSendOverlap->base();
      const Obj<typename recv_overlap_type::traits::capSequence>  cap  = topRecvOverlap->cap();
      const int rank = bundle->commRank();

      if (base->empty()) {
        if (rank == 0) {
          for(int p = 1; p < bundle->commSize(); p++) {
            // The arrow is from local partition point p (source) to remote partition point p (color) on rank p (target)
            sendOverlap->addCone(p, p, p);
          }
        }
      } else {
        for(typename send_overlap_type::traits::baseSequence::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
          const int& p = *b_iter;
          // The arrow is from local partition point p (source) to remote partition point p (color) on rank p (target)
          sendOverlap->addCone(p, p, p);
        }
      }
      if (cap->empty()) {
        if (rank != 0) {
          // The arrow is from local partition point rank (color) on rank 0 (source) to remote partition point rank (target)
          recvOverlap->addCone(0, rank, rank);
        }
      } else {
        for(typename recv_overlap_type::traits::capSequence::iterator c_iter = cap->begin(); c_iter != cap->end(); ++c_iter) {
          const int& p = *c_iter;
          // The arrow is from local partition point rank (color) on rank p (source) to remote partition point rank (target)
          recvOverlap->addCone(p, rank, rank);
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "createAssignment"
    template<typename Partitioner>
    static typename Partitioner::part_type *createAssignment(const Obj<bundle_type>& bundle, const int dim, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const int height = 0) {
      // 1) Form partition point overlap a priori
      createPartitionOverlap(bundle, sendOverlap, recvOverlap);
      if (bundle->debug()) {
        sendOverlap->view("Send overlap for partition");
        recvOverlap->view("Receive overlap for partition");
      }
      // 2) Partition the mesh
      if (height == 0) {
        return Partitioner::partitionSieve(bundle, dim);
      } else if (height == 1) {
        return Partitioner::partitionSieveByFace(bundle, dim);
      }
      throw ALE::Exception("Invalid partition height");
    };
    #undef __FUNCT__
    #define __FUNCT__ "scatterBundle"
    // Partition a bundle on process 0 and scatter to all processes
    static void scatterBundle(const Obj<bundle_type>& bundle, const int dim, const Obj<bundle_type>& bundleNew, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const std::string& partitioner, const int height = 0, const Obj<bundle_type>& subBundle = NULL, const Obj<bundle_type>& subBundleNew = NULL) {
      if (height == 0) {
        if (partitioner == "chaco") {
#ifdef PETSC_HAVE_CHACO
          typedef typename ALE::New::Chaco::Partitioner<bundle_type> Partitioner;
          typedef typename ALE::New::Partitioner<bundle_type>        GenPartitioner;
          typedef typename Partitioner::part_type                    part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (!subBundle.isNull() && !subBundleNew.isNull()) {
            part_type *subAssignment = GenPartitioner::subordinatePartition(bundle, 1, subBundle, assignment);
            const Obj<sieve_type>& sieve      = subBundle->getSieve();
            const Obj<sieve_type>& sieveNew   = new Mesh::sieve_type(subBundle->comm(), subBundle->debug());
            const int              numCells   = subBundle->heightStratum(height)->size();

            subBundleNew->setSieve(sieveNew);
            sieveCompletion::scatterSieve(subBundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, height, numCells, subAssignment);
            subBundleNew->stratify();
            if (subAssignment != NULL) delete [] subAssignment;
          }
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("Chaco is not installed. Reconfigure with the flag --download-chaco");
#endif
        } else if (partitioner == "parmetis") {
#ifdef PETSC_HAVE_PARMETIS
          typedef typename ALE::New::ParMetis::Partitioner<bundle_type> Partitioner;
          typedef typename ALE::New::Partitioner<bundle_type>           GenPartitioner;
          typedef typename Partitioner::part_type                       part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (!subBundle.isNull() && !subBundleNew.isNull()) {
            part_type *subAssignment = GenPartitioner::subordinatePartition(bundle, 1, subBundle, assignment);
            const Obj<sieve_type>& sieve      = subBundle->getSieve();
            const Obj<sieve_type>& sieveNew   = new Mesh::sieve_type(subBundle->comm(), subBundle->debug());
            const int              numCells   = subBundle->heightStratum(height)->size();

            subBundleNew->setSieve(sieveNew);
            sieveCompletion::scatterSieve(subBundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, height, numCells, subAssignment);
            subBundleNew->stratify();
            if (subAssignment != NULL) delete [] subAssignment;
          }
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("ParMetis is not installed. Reconfigure with the flag --download-parmetis");
#endif
        } else {
          throw ALE::Exception("Unknown partitioner");
        }
      } else if (height == 1) {
        if (partitioner == "zoltan") {
#ifdef PETSC_HAVE_ZOLTAN
          typedef typename ALE::New::Zoltan::Partitioner<bundle_type> Partitioner;
          typedef typename Partitioner::part_type                     part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("Zoltan is not installed. Reconfigure with the flag --download-zoltan");
#endif
        } else if (partitioner == "parmetis") {
#ifdef PETSC_HAVE_PARMETIS
          typedef typename ALE::New::ParMetis::Partitioner<bundle_type> Partitioner;
          typedef typename Partitioner::part_type                       part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("ParMetis is not installed. Reconfigure with the flag --download-parmetis");
#endif
        } else {
          throw ALE::Exception("Unknown partitioner");
        }
      } else {
        throw ALE::Exception("Invalid partition height");
      }
    };
    template<typename Partitioner>
    static typename Partitioner::part_type *scatterBundle(const Obj<bundle_type>& bundle, const int dim, const Obj<bundle_type>& bundleNew, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const int height = 0) {
      typename Partitioner::part_type *assignment = createAssignment<Partitioner>(bundle, dim, sendOverlap, recvOverlap, height);
      const Obj<sieve_type>&           sieve      = bundle->getSieve();
      const Obj<sieve_type>&           sieveNew   = bundleNew->getSieve();
      const int                        numPoints  = bundle->heightStratum(height)->size();

      sieveCompletion::scatterSieve(bundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, height, numPoints, assignment);
      bundleNew->stratify();
      return assignment;
    };
    #undef __FUNCT__
    #define __FUNCT__ "distributeMesh"
    static Obj<ALE::Mesh> distributeMesh(const Obj<ALE::Mesh>& serialMesh, const int height = 0, const std::string& partitioner = "chaco") {
      MPI_Comm                          comm          = serialMesh->comm();
      const int                         dim           = serialMesh->getDimension();
      Obj<ALE::Mesh>                    parallelMesh  = new ALE::Mesh(comm, dim, serialMesh->debug());
      const Obj<ALE::Mesh::sieve_type>& parallelSieve = new ALE::Mesh::sieve_type(comm, serialMesh->debug());

      ALE_LOG_EVENT_BEGIN;
      parallelMesh->setSieve(parallelSieve);
      if (serialMesh->debug()) {serialMesh->view("Serial mesh");}

      // Distribute cones
      Obj<send_overlap_type> sendOverlap = new send_overlap_type(comm, serialMesh->debug());
      Obj<recv_overlap_type> recvOverlap = new recv_overlap_type(comm, serialMesh->debug());
      scatterBundle(serialMesh, dim, parallelMesh, sendOverlap, recvOverlap, partitioner, height);
      parallelMesh->setDistSendOverlap(sendOverlap);
      parallelMesh->setDistRecvOverlap(recvOverlap);

      // Distribute labels
      const typename bundle_type::labels_type& labels = serialMesh->getLabels();

      for(typename bundle_type::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (parallelMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename bundle_type::label_type>& serialLabel   = l_iter->second;
        const Obj<typename bundle_type::label_type>& parallelLabel = parallelMesh->createLabel(l_iter->first);
        // Create local label
#define NEW_LABEL
#ifdef NEW_LABEL
        parallelLabel->add(serialLabel, parallelSieve);
#else
        const Obj<typename bundle_type::label_type::traits::baseSequence>& base = serialLabel->base();

        for(typename bundle_type::label_type::traits::baseSequence::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
          if (parallelSieve->capContains(*b_iter) || parallelSieve->baseContains(*b_iter)) {
            parallelLabel->addArrow(*serialLabel->cone(*b_iter)->begin(), *b_iter);
          }
        }
#endif
        // Get remote labels
        sieveCompletion::scatterCones(serialLabel, parallelLabel, sendOverlap, recvOverlap);
      }

      // Distribute sections
      Obj<std::set<std::string> > sections = serialMesh->getRealSections();

      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        parallelMesh->setRealSection(*name, distributeSection(serialMesh->getRealSection(*name), parallelMesh, sendOverlap, recvOverlap));
      }
      sections = serialMesh->getIntSections();
      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        parallelMesh->setIntSection(*name, distributeSection(serialMesh->getIntSection(*name), parallelMesh, sendOverlap, recvOverlap));
      }
      sections = serialMesh->getArrowSections();

      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        parallelMesh->setArrowSection(*name, distributeArrowSection(serialMesh->getArrowSection(*name), serialMesh, parallelMesh, sendOverlap, recvOverlap));
      }
      if (parallelMesh->debug()) {parallelMesh->view("Parallel Mesh");}
      ALE_LOG_EVENT_END;
      return parallelMesh;
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateSectionLocal"
    template<typename Section>
    static void updateSectionLocal(const Obj<Section>& oldSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      const Obj<typename bundle_type::sieve_type>&    newSieve = newBundle->getSieve();
      const typename Section::atlas_type::chart_type& oldChart = oldSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = oldChart.begin(); c_iter != oldChart.end(); ++c_iter) {
        if (newSieve->capContains(*c_iter) || newSieve->baseContains(*c_iter)) {
          newSection->setFiberDimension(*c_iter, oldSection->getFiberDimension(*c_iter));
        }
      }
      newBundle->allocate(newSection);
      const typename Section::atlas_type::chart_type& newChart = newSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = newChart.begin(); c_iter != newChart.end(); ++c_iter) {
        newSection->updatePointAll(*c_iter, oldSection->restrictPoint(*c_iter));
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateSectionRemote"
    template<typename RecvSection, typename Section>
    static void updateSectionRemote(const Obj<recv_overlap_type>& recvOverlap, const Obj<RecvSection>& recvSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      Obj<typename recv_overlap_type::traits::baseSequence> recvPoints = recvOverlap->base();

      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator end         = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != end; ++p_iter) {
          newSection->addPoint(*r_iter, recvSection->getSection(*p_iter)->getFiberDimension(*r_iter));
        }
      }
      newBundle->reallocate(newSection);
      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator end         = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != end; ++p_iter) {
          if (recvSection->getSection(*p_iter)->getFiberDimension(*r_iter)) {
            newSection->updatePointAll(*r_iter, recvSection->getSection(*p_iter)->restrictPoint(*r_iter));
          }
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "distributeSection"
    template<typename Section>
    static Obj<Section> distributeSection(const Obj<Section>& serialSection, const Obj<bundle_type>& parallelBundle, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      if (serialSection->debug()) {
        serialSection->view("Serial Section");
      }
      typedef typename alloc_type::template rebind<typename Section::value_type>::other value_alloc_type;
      typedef ALE::Field<send_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > send_section_type;
      typedef ALE::Field<recv_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > recv_section_type;
      typedef ALE::New::SizeSection<Section> SectionSizer;
      Obj<Section>                 parallelSection = new Section(serialSection->comm(), serialSection->debug());
      const Obj<send_section_type> sendSection     = new send_section_type(serialSection->comm(), serialSection->debug());
      const Obj<recv_section_type> recvSection     = new recv_section_type(serialSection->comm(), sendSection->getTag(), serialSection->debug());
      const Obj<SectionSizer>      sizer           = new SectionSizer(serialSection);

      updateSectionLocal(serialSection, parallelBundle, parallelSection);
      sectionCompletion::completeSection(sendOverlap, recvOverlap, sizer, serialSection, sendSection, recvSection);
      updateSectionRemote(recvOverlap, recvSection, parallelBundle, parallelSection);
      if (parallelSection->debug()) {
        parallelSection->view("Parallel Section");
      }
      return parallelSection;
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateArrowSectionLocal"
    template<typename Section>
    static void updateArrowSectionLocal(const Obj<Section>& oldSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      const Obj<typename bundle_type::sieve_type>&    newSieve = newBundle->getSieve();
      const typename Section::atlas_type::chart_type& oldChart = oldSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = oldChart.begin(); c_iter != oldChart.end(); ++c_iter) {
        // Dmitry should provide a Sieve::contains(MinimalArrow) method
        if (newSieve->capContains(c_iter->source) && newSieve->baseContains(c_iter->target)) {
          newSection->setFiberDimension(*c_iter, oldSection->getFiberDimension(*c_iter));
        }
      }
      //newBundle->allocate(newSection);
      const typename Section::atlas_type::chart_type& newChart = newSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = newChart.begin(); c_iter != newChart.end(); ++c_iter) {
        newSection->updatePointAll(*c_iter, oldSection->restrictPoint(*c_iter));
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateArrowSectionRemote"
    template<typename RecvSection, typename Section>
    static void updateArrowSectionRemote(const Obj<recv_overlap_type>& recvOverlap, const Obj<RecvSection>& recvSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      Obj<typename recv_overlap_type::traits::baseSequence> recvPoints = recvOverlap->base();

      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename bundle_type::sieve_type::traits::coneSequence>&     cone = newBundle->getSieve()->cone(*r_iter);
        const typename bundle_type::sieve_type::traits::coneSequence::iterator end  = cone->end();

        for(typename bundle_type::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != end; ++c_iter) {
          newSection->setFiberDimension(typename Section::point_type(*c_iter, *r_iter), 1);
        }
      }
      //newBundle->reallocate(newSection);
      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator recvEnd     = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != recvEnd; ++p_iter) {
          const Obj<typename RecvSection::section_type>& section = recvSection->getSection(*p_iter);

          if (section->getFiberDimension(*r_iter)) {
            const Obj<typename bundle_type::sieve_type::traits::coneSequence>&     cone    = newBundle->getSieve()->cone(*r_iter);
            const typename bundle_type::sieve_type::traits::coneSequence::iterator end     = cone->end();
            const typename RecvSection::value_type                                *values  = section->restrictPoint(*r_iter);
            int                                                                    c       = -1;

            for(typename bundle_type::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != end; ++c_iter) {
              newSection->updatePoint(typename Section::point_type(*c_iter, *r_iter), &values[++c]);
            }
          }
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "distributeArrowSection"
    template<typename Section>
    static Obj<Section> distributeArrowSection(const Obj<Section>& serialSection, const Obj<bundle_type>& serialBundle, const Obj<bundle_type>& parallelBundle, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      if (serialSection->debug()) {
        serialSection->view("Serial ArrowSection");
      }
      typedef typename alloc_type::template rebind<typename Section::value_type>::other value_alloc_type;
      typedef ALE::Field<send_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > send_section_type;
      typedef ALE::Field<recv_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > recv_section_type;
      typedef ALE::New::ConeSizeSection<bundle_type, sieve_type> SectionSizer;
      typedef ALE::New::ArrowSection<sieve_type, Section>        ArrowFiller;
      Obj<Section>                 parallelSection = new Section(serialSection->comm(), serialSection->debug());
      const Obj<send_section_type> sendSection     = new send_section_type(serialSection->comm(), serialSection->debug());
      const Obj<recv_section_type> recvSection     = new recv_section_type(serialSection->comm(), sendSection->getTag(), serialSection->debug());
      const Obj<SectionSizer>      sizer           = new SectionSizer(serialBundle, serialBundle->getSieve());
      const Obj<ArrowFiller>       filler          = new ArrowFiller(serialBundle->getSieve(), serialSection);

      updateArrowSectionLocal(serialSection, parallelBundle, parallelSection);
      sectionCompletion::completeSection(sendOverlap, recvOverlap, sizer, filler, sendSection, recvSection);
      updateArrowSectionRemote(recvOverlap, recvSection, parallelBundle, parallelSection);
      if (parallelSection->debug()) {
        parallelSection->view("Parallel ArrowSection");
      }
      return parallelSection;
    };
    static void unifyBundle(const Obj<bundle_type>& bundle, const int dim, const Obj<bundle_type>& bundleNew, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      typedef int part_type;
      const Obj<sieve_type>& sieve    = bundle->getSieve();
      const Obj<sieve_type>& sieveNew = bundleNew->getSieve();
      const int              rank     = bundle->commRank();
      const int              debug    = bundle->debug();

      // 1) Form partition point overlap a priori
      if (rank == 0) {
        for(int p = 1; p < sieve->commSize(); p++) {
          // The arrow is from remote partition point 0 on rank p to local partition point 0
          recvOverlap->addCone(p, 0, 0);
        }
      } else {
        // The arrow is from local partition point 0 to remote partition point 0 on rank 0
        sendOverlap->addCone(0, 0, 0);
      }
      if (debug) {
        sendOverlap->view("Send overlap for partition");
        recvOverlap->view("Receive overlap for partition");
      }
      // 2) Partition the mesh
      int        numCells   = bundle->heightStratum(0)->size();
      part_type *assignment = new part_type[numCells];

      for(int c = 0; c < numCells; ++c) {
        assignment[c] = 0;
      }
      // 3) Scatter the sieve
      sieveCompletion::scatterSieve(bundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, 0, numCells, assignment);
      bundleNew->stratify();
      // 4) Cleanup
      if (assignment != NULL) delete [] assignment;
    };
    #undef __FUNCT__
    #define __FUNCT__ "unifyMesh"
    static Obj<ALE::Mesh> unifyMesh(const Obj<ALE::Mesh>& parallelMesh) {
      const int                         dim         = parallelMesh->getDimension();
      Obj<ALE::Mesh>                    serialMesh  = new ALE::Mesh(parallelMesh->comm(), dim, parallelMesh->debug());
      const Obj<ALE::Mesh::sieve_type>& serialSieve = new ALE::Mesh::sieve_type(parallelMesh->comm(), parallelMesh->debug());

      ALE_LOG_EVENT_BEGIN;
      serialMesh->setSieve(serialSieve);
      if (parallelMesh->debug()) {
        parallelMesh->view("Parallel topology");
      }

      // Unify cones
      Obj<send_overlap_type> sendOverlap = new send_overlap_type(serialMesh->comm(), serialMesh->debug());
      Obj<recv_overlap_type> recvOverlap = new recv_overlap_type(serialMesh->comm(), serialMesh->debug());
      unifyBundle(parallelMesh, dim, serialMesh, sendOverlap, recvOverlap);
      serialMesh->setDistSendOverlap(sendOverlap);
      serialMesh->setDistRecvOverlap(recvOverlap);

      // Unify labels
      const typename bundle_type::labels_type& labels = parallelMesh->getLabels();

      for(typename bundle_type::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (serialMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename bundle_type::label_type>& parallelLabel = l_iter->second;
        const Obj<typename bundle_type::label_type>& serialLabel   = serialMesh->createLabel(l_iter->first);

        sieveCompletion::scatterCones(parallelLabel, serialLabel, sendOverlap, recvOverlap);
      }

      // Unify coordinates
      Obj<std::set<std::string> > sections = parallelMesh->getRealSections();

      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        serialMesh->setRealSection(*name, distributeSection(parallelMesh->getRealSection(*name), serialMesh, sendOverlap, recvOverlap));
      }
      sections = parallelMesh->getIntSections();
      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        serialMesh->setIntSection(*name, distributeSection(parallelMesh->getIntSection(*name), serialMesh, sendOverlap, recvOverlap));
      }
      sections = parallelMesh->getArrowSections();
      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        serialMesh->setArrowSection(*name, distributeArrowSection(parallelMesh->getArrowSection(*name), parallelMesh, serialMesh, sendOverlap, recvOverlap));
      }
      if (serialMesh->debug()) {serialMesh->view("Serial Mesh");}
      ALE_LOG_EVENT_END;
      return serialMesh;
    };
  public: // Do not like these
    #undef __FUNCT__
    #define __FUNCT__ "updateOverlap"
    // This is just crappy. We could introduce another phase to find out exactly what
    //   indices people do not have in the global order after communication
    template<typename OrigSendOverlap, typename OrigRecvOverlap, typename SendSection, typename RecvSection>
    static void updateOverlap(const Obj<OrigSendOverlap>& origSendOverlap, const Obj<OrigRecvOverlap>& origRecvOverlap, const Obj<SendSection>& sendSection, const Obj<RecvSection>& recvSection, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      const typename SendSection::sheaf_type& sendRanks = sendSection->getPatches();
      const typename RecvSection::sheaf_type& recvRanks = recvSection->getPatches();

      for(typename SendSection::sheaf_type::const_iterator p_iter = sendRanks.begin(); p_iter != sendRanks.end(); ++p_iter) {
        const typename SendSection::patch_type&               rank    = p_iter->first;
        const Obj<typename SendSection::section_type>&        section = p_iter->second;
        const typename SendSection::section_type::chart_type& chart   = section->getChart();

        for(typename SendSection::section_type::chart_type::const_iterator b_iter = chart.begin(); b_iter != chart.end(); ++b_iter) {
          const typename SendSection::value_type *points = section->restrictPoint(*b_iter);
          const int                               size   = section->getFiberDimension(*b_iter);

          for(int p = 0; p < size; p++) {
            if (origSendOverlap->support(points[p])->size() == 0) {
              sendOverlap->addArrow(points[p], rank, points[p]);
            }
          }
        }
      }
      for(typename RecvSection::sheaf_type::const_iterator p_iter = recvRanks.begin(); p_iter != recvRanks.end(); ++p_iter) {
        const typename RecvSection::patch_type&               rank    = p_iter->first;
        const Obj<typename RecvSection::section_type>&        section = p_iter->second;
        const typename RecvSection::section_type::chart_type& chart   = section->getChart();

        for(typename RecvSection::section_type::chart_type::const_iterator b_iter = chart.begin(); b_iter != chart.end(); ++b_iter) {
          const typename RecvSection::value_type *points = section->restrictPoint(*b_iter);
          const int                               size   = section->getFiberDimension(*b_iter);

          for(int p = 0; p < size; p++) {
            if (origRecvOverlap->support(rank, points[p])->size() == 0) {
              recvOverlap->addArrow(rank, points[p], points[p]);
            }
          }
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateSieve"
    template<typename RecvOverlap, typename RecvSection>
    static void updateSieve(const Obj<RecvOverlap>& recvOverlap, const Obj<RecvSection>& recvSection, const Obj<sieve_type>& sieve) {
#if 1
      Obj<typename RecvOverlap::traits::baseSequence> recvPoints = recvOverlap->base();

      for(typename RecvOverlap::traits::baseSequence::iterator p_iter = recvPoints->begin(); p_iter != recvPoints->end(); ++p_iter) {
        const Obj<typename RecvOverlap::traits::coneSequence>& ranks      = recvOverlap->cone(*p_iter);
        const typename RecvOverlap::target_type&               localPoint = *p_iter;

        for(typename RecvOverlap::traits::coneSequence::iterator r_iter = ranks->begin(); r_iter != ranks->end(); ++r_iter) {
          const typename RecvOverlap::target_type&       remotePoint = r_iter.color();
          const int                                      rank        = *r_iter;
          const Obj<typename RecvSection::section_type>& section     = recvSection->getSection(rank);
          const typename RecvSection::value_type        *points      = section->restrictPoint(remotePoint);
          const int                                      size        = section->getFiberDimension(remotePoint);
          int                                            c           = 0;

          ///std::cout << "["<<recvSection->commRank()<<"]: Receiving " << size << " points from rank " << rank << std::endl;
          for(int p = 0; p < size; p++) {
            // rank -- remote point --> local point
            if (recvOverlap->support(rank, points[p])->size()) {
              sieve->addArrow(*recvOverlap->support(rank, points[p])->begin(), localPoint, c);
              ///std::cout << "["<<recvSection->commRank()<<"]:   1Adding arrow " << *recvOverlap->support(rank, points[p])->begin() << "("<<points[p]<<") --> " << localPoint << std::endl;
            } else {
              sieve->addArrow(points[p], localPoint, c);
              ///std::cout << "["<<recvSection->commRank()<<"]:   2Adding arrow " << points[p] << " --> " << localPoint << std::endl;
            }
          }
        }
      }
#else
      const typename RecvSection::sheaf_type& ranks = recvSection->getPatches();

      for(typename RecvSection::sheaf_type::const_iterator p_iter = ranks.begin(); p_iter != ranks.end(); ++p_iter) {
        const Obj<typename RecvSection::section_type>&        section = p_iter->second;
        const typename RecvSection::section_type::chart_type& chart   = section->getChart();

        for(typename RecvSection::section_type::chart_type::const_iterator b_iter = chart.begin(); b_iter != chart.end(); ++b_iter) {
          const typename RecvSection::value_type *points = section->restrictPoint(*b_iter);
          int                                     size   = section->getFiberDimension(*b_iter);
          int                                     c      = 0;

          std::cout << "["<<recvSection->commRank()<<"]: Receiving " << size << " points from rank " << p_iter->first << std::endl;
          for(int p = 0; p < size; p++) {
            //sieve->addArrow(points[p], *b_iter, c++);
            sieve->addArrow(points[p], *b_iter, c);
            std::cout << "["<<recvSection->commRank()<<"]:   Adding arrow " << points[p] << " --> " << *b_iter << std::endl;
          }
        }
      }
#endif
    };
    #undef __FUNCT__
    #define __FUNCT__ "coneCompletion"
    template<typename SendOverlap, typename RecvOverlap, typename SendSection, typename RecvSection>
    static void coneCompletion(const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<bundle_type>& bundle, const Obj<SendSection>& sendSection, const Obj<RecvSection>& recvSection) {
      if (sendOverlap->commSize() == 1) return;
      // Distribute cones
      const Obj<sieve_type>&                                 sieve           = bundle->getSieve();
      const Obj<typename sieveCompletion::topology_type>     secTopology     = sieveCompletion::completion::createSendTopology(sendOverlap);
      const Obj<typename sieveCompletion::cone_size_section> coneSizeSection = new typename sieveCompletion::cone_size_section(bundle, sieve);
      const Obj<typename sieveCompletion::cone_section>      coneSection     = new typename sieveCompletion::cone_section(sieve);
      sieveCompletion::completion::completeSection(sendOverlap, recvOverlap, coneSizeSection, coneSection, sendSection, recvSection);
      // Update cones
      updateSieve(recvOverlap, recvSection, sieve);
    };
    #undef __FUNCT__
    #define __FUNCT__ "completeSection"
    template<typename Section>
    static void completeSection(const Obj<bundle_type>& bundle, const Obj<Section>& section) {
      typedef typename Distribution<bundle_type>::sieveCompletion sieveCompletion;
      typedef typename bundle_type::send_overlap_type             send_overlap_type;
      typedef typename bundle_type::recv_overlap_type             recv_overlap_type;
      typedef typename Section::value_type                        value_type;
      typedef typename alloc_type::template rebind<typename Section::value_type>::other value_alloc_type;
      typedef typename ALE::Field<send_overlap_type, int, ALE::Section<point_type, value_type, value_alloc_type> > send_section_type;
      typedef typename ALE::Field<recv_overlap_type, int, ALE::Section<point_type, value_type, value_alloc_type> > recv_section_type;
      typedef ALE::New::SizeSection<Section>                                SectionSizer;
      const int debug = section->debug();

      bundle->constructOverlap();
      const Obj<send_overlap_type> sendOverlap = bundle->getSendOverlap();
      const Obj<recv_overlap_type> recvOverlap = bundle->getRecvOverlap();
      const Obj<send_section_type> sendSection = new send_section_type(section->comm(), section->debug());
      const Obj<recv_section_type> recvSection = new recv_section_type(section->comm(), sendSection->getTag(), section->debug());
      const Obj<SectionSizer>      sizer       = new SectionSizer(section);

      sectionCompletion::completeSection(sendOverlap, recvOverlap, sizer, section, sendSection, recvSection);
      // Update section with remote data
      const Obj<typename recv_overlap_type::traits::baseSequence> recvPoints = bundle->getRecvOverlap()->base();

      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator end         = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != end; ++p_iter) {
          if (recvSection->getSection(*p_iter)->getFiberDimension(p_iter.color())) {
            if (debug) {std::cout << "["<<section->commRank()<<"]Completed point " << *r_iter << std::endl;}
            section->updateAddPoint(*r_iter, recvSection->getSection(*p_iter)->restrictPoint(p_iter.color()));
          }
        }
      }
    };
  };
}
#endif