This file is indexed.

/usr/lib/petscdir/3.1/include/sieve/DMBuilder.hh is in libpetsc3.1-dev 3.1.dfsg-11ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#ifndef included_ALE_DMBuilder_hh
#define included_ALE_DMBuilder_hh

#ifndef  included_ALE_Mesh_hh
#include <Mesh.hh>
#endif

#include <petscmesh.hh>

namespace ALE {

  class DMBuilder {
  public:
    #undef __FUNCT__
    #define __FUNCT__ "CreateBasketMesh"
    static PetscErrorCode createBasketMesh(MPI_Comm comm, const int dim, const bool structured, const bool interpolate, const int debug, DM *dm) {
      PetscErrorCode ierr;

      PetscFunctionBegin;
      if (structured) {
        SETERRQ(PETSC_ERR_SUP, "Structured grids cannot handle boundary meshes");
      } else {
        typedef PETSC_MESH_TYPE::point_type point_type;
        ::Mesh boundary;

        ierr = MeshCreate(comm, &boundary);CHKERRQ(ierr);
        Obj<PETSC_MESH_TYPE>             meshBd = new PETSC_MESH_TYPE(comm, dim-1, debug);
        Obj<PETSC_MESH_TYPE::sieve_type> sieve  = new PETSC_MESH_TYPE::sieve_type(comm, debug);
        std::map<point_type,point_type>  renumbering;
        Obj<ALE::Mesh>                   mB;

        meshBd->setSieve(sieve);
        if (dim == 2) {
          double lower[2] = {0.0, 0.0};
          double upper[2] = {1.0, 1.0};
          int    edges    = 2;

          mB = ALE::MeshBuilder<ALE::Mesh>::createSquareBoundary(comm, lower, upper, edges, debug);
        } else if (dim == 3) {
          double lower[3] = {0.0, 0.0, 0.0};
          double upper[3] = {1.0, 1.0, 1.0};
          int    faces[3] = {3, 3, 3};
                
          mB = ALE::MeshBuilder<ALE::Mesh>::createCubeBoundary(comm, lower, upper, faces, debug);
        } else {
          SETERRQ1(PETSC_ERR_SUP, "Dimension not supported: %d", dim);
        }
        ALE::ISieveConverter::convertMesh(*mB, *meshBd, renumbering, false);
        ierr = MeshSetMesh(boundary, meshBd);CHKERRQ(ierr);
        *dm = (DM) boundary;
      }
      PetscFunctionReturn(0);
    };
    #undef __FUNCT__
    #define __FUNCT__ "CreateBoxMesh"
    static PetscErrorCode createBoxMesh(MPI_Comm comm, const int dim, const bool structured, const bool interpolate, const int debug, DM *dm) {
      PetscErrorCode ierr;

      PetscFunctionBegin;
      if (structured) {
        DA             da;
        const PetscInt dof = 1;
        const PetscInt pd  = PETSC_DECIDE;

        if (dim == 2) {
          ierr = DACreate2d(comm, DA_NONPERIODIC, DA_STENCIL_BOX, -3, -3, pd, pd, dof, 1, PETSC_NULL, PETSC_NULL, &da);CHKERRQ(ierr);
        } else if (dim == 3) {
          ierr = DACreate3d(comm, DA_NONPERIODIC, DA_STENCIL_BOX, -3, -3, -3, pd, pd, pd, dof, 1, PETSC_NULL, PETSC_NULL, PETSC_NULL, &da);CHKERRQ(ierr);
        } else {
          SETERRQ1(PETSC_ERR_SUP, "Dimension not supported: %d", dim);
        }
        ierr = DASetUniformCoordinates(da, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);CHKERRQ(ierr);
        *dm = (DM) da;
      } else {
        typedef PETSC_MESH_TYPE::point_type point_type;
        ::Mesh mesh;
        ::Mesh boundary;

        ierr = MeshCreate(comm, &boundary);CHKERRQ(ierr);
        Obj<PETSC_MESH_TYPE>             meshBd = new PETSC_MESH_TYPE(comm, dim-1, debug);
        Obj<PETSC_MESH_TYPE::sieve_type> sieve  = new PETSC_MESH_TYPE::sieve_type(comm, debug);
        std::map<point_type,point_type>  renumbering;
        Obj<ALE::Mesh>                   mB;

        meshBd->setSieve(sieve);
        if (dim == 2) {
          double lower[2] = {0.0, 0.0};
          double upper[2] = {1.0, 1.0};
          int    edges[2] = {2, 2};

          mB = ALE::MeshBuilder<ALE::Mesh>::createSquareBoundary(comm, lower, upper, edges, debug);
        } else if (dim == 3) {
          double lower[3] = {0.0, 0.0, 0.0};
          double upper[3] = {1.0, 1.0, 1.0};
          int    faces[3] = {3, 3, 3};
                
          mB = ALE::MeshBuilder<ALE::Mesh>::createCubeBoundary(comm, lower, upper, faces, debug);
        } else {
          SETERRQ1(PETSC_ERR_SUP, "Dimension not supported: %d", dim);
        }
        ALE::ISieveConverter::convertMesh(*mB, *meshBd, renumbering, false);
        ierr = MeshSetMesh(boundary, meshBd);CHKERRQ(ierr);
        ierr = MeshGenerate(boundary, (PetscTruth) interpolate, &mesh);CHKERRQ(ierr);
        ierr = MeshDestroy(boundary);CHKERRQ(ierr);
        *dm = (DM) mesh;
      }
      PetscFunctionReturn(0);
    };
    #undef __FUNCT__
    #define __FUNCT__ "CreateReentrantBoxMesh"
    static PetscErrorCode createReentrantBoxMesh(MPI_Comm comm, const int dim, const bool interpolate, const int debug, DM *dm) {
      typedef PETSC_MESH_TYPE::point_type point_type;
      ::Mesh         mesh;
      ::Mesh         boundary;
      PetscErrorCode ierr;

      PetscFunctionBegin;
      ierr = MeshCreate(comm, &boundary);CHKERRQ(ierr);
      Obj<PETSC_MESH_TYPE>             meshBd = new PETSC_MESH_TYPE(comm, dim-1, debug);
      Obj<PETSC_MESH_TYPE::sieve_type> sieve  = new PETSC_MESH_TYPE::sieve_type(comm, debug);
      std::map<point_type,point_type>  renumbering;
      Obj<ALE::Mesh>                   mB;

      meshBd->setSieve(sieve);
      if (dim == 2) {
        double lower[2]  = {-1.0, -1.0};
        double upper[2]  = {1.0, 1.0};
        double offset[2] = {0.5, 0.5};

        mB = ALE::MeshBuilder<ALE::Mesh>::createReentrantBoundary(comm, lower, upper, offset, debug);
      } else if (dim == 3) {
        double lower[3]  = {-1.0, -1.0, -1.0};
        double upper[3]  = { 1.0,  1.0,  1.0};
        double offset[3] = { 0.5,  0.5,  0.5};

        mB = ALE::MeshBuilder<ALE::Mesh>::createFicheraCornerBoundary(comm, lower, upper, offset, debug);
      } else {
        SETERRQ1(PETSC_ERR_SUP, "Dimension not supported: %d", dim);
      }
      ALE::ISieveConverter::convertMesh(*mB, *meshBd, renumbering, false);
      ierr = MeshSetMesh(boundary, meshBd);CHKERRQ(ierr);
      ierr = MeshGenerate(boundary, (PetscTruth) interpolate, &mesh);CHKERRQ(ierr);
      ierr = MeshDestroy(boundary);CHKERRQ(ierr);
      *dm = (DM) mesh;
      PetscFunctionReturn(0);
    };
    #undef __FUNCT__
    #define __FUNCT__ "CreateSphericalMesh"
    static PetscErrorCode createSphericalMesh(MPI_Comm comm, const int dim, const bool interpolate, const int debug, DM *dm) {
      typedef PETSC_MESH_TYPE::point_type point_type;
      ::Mesh         mesh;
      ::Mesh         boundary;
      PetscErrorCode ierr;

      PetscFunctionBegin;
      ierr = MeshCreate(comm, &boundary);CHKERRQ(ierr);
      Obj<PETSC_MESH_TYPE>             meshBd = new PETSC_MESH_TYPE(comm, dim-1, debug);
      Obj<PETSC_MESH_TYPE::sieve_type> sieve  = new PETSC_MESH_TYPE::sieve_type(comm, debug);
      std::map<point_type,point_type>  renumbering;
      Obj<ALE::Mesh>                   mB;

      meshBd->setSieve(sieve);
      if (dim == 2) {
        mB = ALE::MeshBuilder<ALE::Mesh>::createCircularReentrantBoundary(comm, 100, 1.0, 1.0, debug);
      } else {
        SETERRQ1(PETSC_ERR_SUP, "Dimension not supported: %d", dim);
      }
      ALE::ISieveConverter::convertMesh(*mB, *meshBd, renumbering, false);
      ierr = MeshSetMesh(boundary, meshBd);CHKERRQ(ierr);
      ierr = MeshGenerate(boundary, (PetscTruth) interpolate, &mesh);CHKERRQ(ierr);
      ierr = MeshDestroy(boundary);CHKERRQ(ierr);
      *dm = (DM) mesh;
      PetscFunctionReturn(0);
    };
    #undef __FUNCT__
    #define __FUNCT__ "CreateReentrantSphericalMesh"
    static PetscErrorCode createReentrantSphericalMesh(MPI_Comm comm, const int dim, const bool interpolate, const int debug, DM *dm) {
      typedef PETSC_MESH_TYPE::point_type point_type;
      ::Mesh         mesh;
      ::Mesh         boundary;
      PetscErrorCode ierr;

      PetscFunctionBegin;
      ierr = MeshCreate(comm, &boundary);CHKERRQ(ierr);
      Obj<PETSC_MESH_TYPE>             meshBd = new PETSC_MESH_TYPE(comm, dim-1, debug);
      Obj<PETSC_MESH_TYPE::sieve_type> sieve  = new PETSC_MESH_TYPE::sieve_type(comm, debug);
      std::map<point_type,point_type>  renumbering;
      Obj<ALE::Mesh>                   mB;

      meshBd->setSieve(sieve);
      if (dim == 2) {
        mB = ALE::MeshBuilder<ALE::Mesh>::createCircularReentrantBoundary(comm, 100, 1.0, 0.9, debug);
      } else {
        SETERRQ1(PETSC_ERR_SUP, "Dimension not supported: %d", dim);
      }
      ALE::ISieveConverter::convertMesh(*mB, *meshBd, renumbering, false);
      ierr = MeshSetMesh(boundary, meshBd);CHKERRQ(ierr);
      ierr = MeshGenerate(boundary, (PetscTruth) interpolate, &mesh);CHKERRQ(ierr);
      ierr = MeshDestroy(boundary);CHKERRQ(ierr);
      *dm = (DM) mesh;
      PetscFunctionReturn(0);
    };
    #undef __FUNCT__  
    #define __FUNCT__ "MeshRefineSingularity"
    static PetscErrorCode MeshRefineSingularity(::Mesh mesh, double * singularity, double factor, ::Mesh *refinedMesh) {
      ALE::Obj<PETSC_MESH_TYPE> oldMesh;
      double              oldLimit;
      PetscErrorCode      ierr;

      PetscFunctionBegin;
      ierr = MeshGetMesh(mesh, oldMesh);CHKERRQ(ierr);
      ierr = MeshCreate(oldMesh->comm(), refinedMesh);CHKERRQ(ierr);
      int dim = oldMesh->getDimension();
      oldLimit = oldMesh->getMaxVolume();
      //double oldLimInv = 1./oldLimit;
      double curLimit, tmpLimit;
      double minLimit = oldLimit/16384.;             //arbitrary;
      const ALE::Obj<PETSC_MESH_TYPE::real_section_type>& coordinates = oldMesh->getRealSection("coordinates");
      const ALE::Obj<PETSC_MESH_TYPE::real_section_type>& volume_limits = oldMesh->getRealSection("volume_limits");
      volume_limits->setFiberDimension(oldMesh->heightStratum(0), 1);
      oldMesh->allocate(volume_limits);
      const ALE::Obj<PETSC_MESH_TYPE::label_sequence>& cells = oldMesh->heightStratum(0);
      PETSC_MESH_TYPE::label_sequence::iterator c_iter = cells->begin();
      PETSC_MESH_TYPE::label_sequence::iterator c_iter_end = cells->end();
      double centerCoords[dim];
      while (c_iter != c_iter_end) {
        const double * coords = oldMesh->restrictClosure(coordinates, *c_iter);
        for (int i = 0; i < dim; i++) {
          centerCoords[i] = 0;
          for (int j = 0; j < dim+1; j++) {
            centerCoords[i] += coords[j*dim+i];
          }
          centerCoords[i] = centerCoords[i]/(dim+1);
        }
        double dist = 0.;
        for (int i = 0; i < dim; i++) {
          dist += (centerCoords[i] - singularity[i])*(centerCoords[i] - singularity[i]);
        }
        if (dist > 0.) {
          dist = sqrt(dist);
          double mu = pow(dist, factor);
          //PetscPrintf(oldMesh->comm(), "%f\n", mu);
          tmpLimit = oldLimit*pow(mu, dim);
          if (tmpLimit > minLimit) {
            curLimit = tmpLimit;
          } else curLimit = minLimit;
        } else curLimit = minLimit;
        //PetscPrintf(oldMesh->comm(), "%f, %f\n", dist, tmpLimit);
        volume_limits->updatePoint(*c_iter, &curLimit);
        c_iter++;
      }
#ifdef PETSC_OPT_SIEVE
      ALE::Obj<PETSC_MESH_TYPE> newMesh = ALE::Generator<PETSC_MESH_TYPE>::refineMeshV(oldMesh, volume_limits, true);
#else
      ALE::Obj<PETSC_MESH_TYPE> newMesh = ALE::Generator<PETSC_MESH_TYPE>::refineMesh(oldMesh, volume_limits, true);
#endif
      ierr = MeshSetMesh(*refinedMesh, newMesh);CHKERRQ(ierr);
      const ALE::Obj<PETSC_MESH_TYPE::real_section_type>& s = newMesh->getRealSection("default");
      const Obj<std::set<std::string> >& discs = oldMesh->getDiscretizations();

      for(std::set<std::string>::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter) {
        newMesh->setDiscretization(*f_iter, oldMesh->getDiscretization(*f_iter));
      }
      newMesh->setupField(s);
      PetscFunctionReturn(0);
    };
    #undef __FUNCT__  
    #define __FUNCT__ "MeshRefineSingularity_Fichera"
    static PetscErrorCode MeshRefineSingularity_Fichera(::Mesh mesh, double * singularity, double factor, ::Mesh *refinedMesh) {
      ALE::Obj<PETSC_MESH_TYPE> oldMesh;
      double              oldLimit;
      PetscErrorCode      ierr;

      PetscFunctionBegin;
      ierr = MeshGetMesh(mesh, oldMesh);CHKERRQ(ierr);
      ierr = MeshCreate(oldMesh->comm(), refinedMesh);CHKERRQ(ierr);
      int dim = oldMesh->getDimension();
      oldLimit = oldMesh->getMaxVolume();
      //double oldLimInv = 1./oldLimit;
      double curLimit, tmpLimit;
      double minLimit = oldLimit/16384.;             //arbitrary;
      const ALE::Obj<PETSC_MESH_TYPE::real_section_type>& coordinates = oldMesh->getRealSection("coordinates");
      const ALE::Obj<PETSC_MESH_TYPE::real_section_type>& volume_limits = oldMesh->getRealSection("volume_limits");
      volume_limits->setFiberDimension(oldMesh->heightStratum(0), 1);
      oldMesh->allocate(volume_limits);
      const ALE::Obj<PETSC_MESH_TYPE::label_sequence>& cells = oldMesh->heightStratum(0);
      PETSC_MESH_TYPE::label_sequence::iterator c_iter = cells->begin();
      PETSC_MESH_TYPE::label_sequence::iterator c_iter_end = cells->end();
      double centerCoords[dim];
      while (c_iter != c_iter_end) {
        const double * coords = oldMesh->restrictClosure(coordinates, *c_iter);
        for (int i = 0; i < dim; i++) {
          centerCoords[i] = 0;
          for (int j = 0; j < dim+1; j++) {
            centerCoords[i] += coords[j*dim+i];
          }
          centerCoords[i] = centerCoords[i]/(dim+1);
          //PetscPrintf(oldMesh->comm(), "%f, ", centerCoords[i]);
        }
        //PetscPrintf(oldMesh->comm(), "\n");
        double dist = 0.;
        double cornerdist = 0.;
        //HERE'S THE DIFFERENCE: if centercoords is less than the singularity coordinate for each direction, include that direction in the distance
        /*
          for (int i = 0; i < dim; i++) {
          if (centerCoords[i] <= singularity[i]) {
          dist += (centerCoords[i] - singularity[i])*(centerCoords[i] - singularity[i]);
          }
          }
        */
        //determine: the per-dimension distance: cases
        for (int i = 0; i < dim; i++) {
          cornerdist = 0.;
          if (centerCoords[i] > singularity[i]) {
            for (int j = 0; j < dim; j++) {
              if (j != i) cornerdist += (centerCoords[j] - singularity[j])*(centerCoords[j] - singularity[j]);
            }
            if (cornerdist < dist || dist == 0.) dist = cornerdist; 
          }
        }
        //patch up AROUND the corner by minimizing between the distance from the relevant axis and the singular vertex
        double singdist = 0.;
        for (int i = 0; i < dim; i++) {
          singdist += (centerCoords[i] - singularity[i])*(centerCoords[i] - singularity[i]);
        }
        if (singdist < dist || dist == 0.) dist = singdist;
        if (dist > 0.) {
          dist = sqrt(dist);
          double mu = pow(dist, factor);
          //PetscPrintf(oldMesh->comm(), "%f, %f\n", mu, dist);
          tmpLimit = oldLimit*pow(mu, dim);
          if (tmpLimit > minLimit) {
            curLimit = tmpLimit;
          } else curLimit = minLimit;
        } else curLimit = minLimit;
        //PetscPrintf(oldMesh->comm(), "%f, %f\n", dist, tmpLimit);
        volume_limits->updatePoint(*c_iter, &curLimit);
        c_iter++;
      }
#ifdef PETSC_OPT_SIEVE
      ALE::Obj<PETSC_MESH_TYPE> newMesh = ALE::Generator<PETSC_MESH_TYPE>::refineMeshV(oldMesh, volume_limits, true);
#else
      ALE::Obj<PETSC_MESH_TYPE> newMesh = ALE::Generator<PETSC_MESH_TYPE>::refineMesh(oldMesh, volume_limits, true);
#endif
      ierr = MeshSetMesh(*refinedMesh, newMesh);CHKERRQ(ierr);
      const ALE::Obj<PETSC_MESH_TYPE::real_section_type>& s = newMesh->getRealSection("default");
      const Obj<std::set<std::string> >& discs = oldMesh->getDiscretizations();

      for(std::set<std::string>::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter) {
        newMesh->setDiscretization(*f_iter, oldMesh->getDiscretization(*f_iter));
      }
      newMesh->setupField(s);
      //  PetscPrintf(newMesh->comm(), "refined\n");
      PetscFunctionReturn(0);
    };
  };
}

#endif