/usr/include/openturns/RandomMixture.hxx is in libopenturns-dev 0.15-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | // -*- C++ -*-
/**
* @file RandomMixture.hxx
* @brief The class that implements randomMixtures
*
* (C) Copyright 2005-2011 EDF-EADS-Phimeca
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License.
*
* This library is distributed in the hope that it will be useful
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* @author: $LastChangedBy: schueller $
* @date: $LastChangedDate: 2011-05-24 19:30:41 +0200 (Tue, 24 May 2011) $
* Id: $Id: RandomMixture.hxx 1910 2011-05-24 17:30:41Z schueller $
*/
#ifndef OPENTURNS_RANDOMMIXTURE_HXX
#define OPENTURNS_RANDOMMIXTURE_HXX
#include "Distribution.hxx"
#include "DistributionFactory.hxx"
#include "DistributionImplementation.hxx"
#include "Exception.hxx"
#include "Collection.hxx"
#include "PersistentCollection.hxx"
#include "SpecFunc.hxx"
#include "Normal.hxx"
namespace OpenTURNS
{
namespace Uncertainty
{
namespace Distribution
{
/**
* @class RandomMixture
*
* The class describes the probabilistic concept of RandomMixture.
*/
class RandomMixture
: public Model::DistributionImplementation
{
CLASSNAME;
public:
/** A type for distribution collection. Cannot typedef Distribution as it is also a namespace! */
typedef Base::Func::SpecFunc SpecFunc;
typedef Base::Type::Collection<Model::Distribution> DistributionCollection;
typedef Base::Type::PersistentCollection<Model::Distribution> DistributionPersistentCollection;
typedef Base::Type::PersistentCollection<NumericalComplex> NumericalComplexPersistentCollection;
typedef Model::DistributionImplementation DistributionImplementation; // required by SWIG
typedef DistributionImplementation::InvalidArgumentException InvalidArgumentException;
typedef DistributionImplementation::NumericalPoint NumericalPoint;
typedef DistributionImplementation::NumericalSample NumericalSample;
typedef DistributionImplementation::Implementation Implementation;
typedef DistributionImplementation::Indices Indices;
typedef DistributionImplementation::NotDefinedException NotDefinedException;
typedef DistributionImplementation::NumericalPointWithDescriptionCollection NumericalPointWithDescriptionCollection;
typedef DistributionImplementation::StorageManager StorageManager;
typedef Model::DistributionFactory DistributionFactory;
typedef Base::Type::Collection<DistributionFactory> DistributionFactoryCollection;
// Log2 minimum number of characteristic values to consider to compute PDF and CDF
static const UnsignedLong DefaultBlockMin; /* = 3 */
// Log2 maximum number of characteristic values to consider to compute PDF and CDF
static const UnsignedLong DefaultBlockMax; /* = 16 */
// Maximum number of values to store
static const UnsignedLong DefaultMaxSize; /* = 65536 */
// A priori range in dispersionIndicator units
static const NumericalScalar DefaultAlpha; /* = 5.0 */
// Numerical precision for computing the PDF
static const NumericalScalar DefaultPDFEpsilon; /* = 1e-10 */
// Numerical precision for computing the CDF
static const NumericalScalar DefaultCDFEpsilon; /* = 1e-10 */
// Numerical precision for computing the PDF for graphs
static const NumericalScalar GraphPDFEpsilon; /* = 1e-5 */
// Numerical precision for computing the CDF for graphs
static const NumericalScalar GraphCDFEpsilon; /* = 1e-5 */
// Size above which a mixture is said to be "large"
static const UnsignedLong SmallSize; /* = 100 */
// Sampling size to project the random mixture */
static const UnsignedLong DefaultSizeProjection; /* = 10000 */
/** Parameter constructor */
explicit RandomMixture(const DistributionCollection & coll,
const NumericalScalar constant = 0.0)
/* throw (InvalidArgumentException) */;
/** Parameter constructor */
explicit RandomMixture(const DistributionCollection & coll,
const NumericalPoint & weights,
const NumericalScalar constant = 0.0)
/* throw (InvalidArgumentException) */;
/** Comparison operator */
Bool operator ==(const RandomMixture & other) const;
/** String converter */
String __repr__() const;
/** Distribution collection accessor */
void setDistributionCollection(const DistributionCollection & coll)
/* throw (InvalidArgumentException) */;
const DistributionCollection & getDistributionCollection() const;
/** Constant accessor */
void setConstant(const NumericalScalar constant);
NumericalScalar getConstant() const;
/* Here is the interface that all derived class must implement */
/** Virtual constructor */
virtual RandomMixture * clone() const;
/** Get one realization of the RandomMixture */
NumericalPoint getRealization() const;
/** Get the DDF of the RandomMixture */
using DistributionImplementation::computeDDF;
NumericalPoint computeDDF(const NumericalPoint & point) const;
/** Get the PDF of the RandomMixture */
using DistributionImplementation::computePDF;
NumericalScalar computePDF(const NumericalPoint & point) const;
/** Compute the PDF over a regular grid */
NumericalSample computePDF(const NumericalScalar xMin,
const NumericalScalar xMax,
const UnsignedLong pointNumber,
const NumericalScalar precision = GraphPDFEpsilon) const;
protected:
private:
/** Quantile computation for dimension=1 */
NumericalScalar computeScalarQuantile(const NumericalScalar prob,
const Bool tail = false,
const NumericalScalar precision = DefaultQuantileEpsilon) const;
/** Compute the characteristic function of 1D distributions by difference to a reference Normal distribution with the same mean and the same standard deviation in a regular pattern with cache */
NumericalComplex computeDeltaCharacteristicFunction(const UnsignedLong index) const;
public:
/** Get the CDF of the RandomMixture */
using DistributionImplementation::computeCDF;
NumericalScalar computeCDF(const NumericalPoint & point,
const Bool tail = false) const;
/** Compute the CDF over a regular grid */
NumericalSample computeCDF(const NumericalScalar xMin,
const NumericalScalar xMax,
const UnsignedLong pointNumber,
const NumericalScalar precision = GraphCDFEpsilon,
const Bool tail = false) const;
/** Get the probability content of an interval */
NumericalScalar computeProbability(const Interval & interval) const;
/** Compute the quantile over a regular grid */
using DistributionImplementation::computeQuantile;
NumericalSample computeQuantile(const NumericalScalar qMin,
const NumericalScalar qMax,
const UnsignedLong pointNumber,
const NumericalScalar precision = GraphCDFEpsilon,
const Bool tail = false) const;
/** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
using DistributionImplementation::computeCharacteristicFunction;
NumericalComplex computeCharacteristicFunction(const NumericalScalar x,
const Bool logScale = false) const;
/** Get the PDF gradient of the distribution */
NumericalPoint computePDFGradient(const NumericalPoint & point) const;
/** Get the CDF gradient of the distribution */
NumericalPoint computeCDFGradient(const NumericalPoint & point) const;
/** Parameters value and description accessor */
NumericalPointWithDescriptionCollection getParametersCollection() const;
/** Weights distribution accessor */
void setWeights(const NumericalPoint & weights);
NumericalPoint getWeights() const;
/** Get a positon indicator for a 1D distribution */
NumericalScalar getPositionIndicator() const;
/** Get a dispersion indicator for a 1D distribution */
NumericalScalar getDispersionIndicator() const;
/** BlockMin accessor */
void setBlockMin(const UnsignedLong blockMin);
UnsignedLong getBlockMin() const;
/** BlockMax accessor */
void setBlockMax(const UnsignedLong blockMax);
UnsignedLong getBlockMax() const;
/** MaxSize accessor */
void setMaxSize(const UnsignedLong maxSize);
UnsignedLong getMaxSize() const;
/** Alpha accessor */
void setAlpha(const NumericalScalar alpha);
NumericalScalar getAlpha() const;
/** Beta accessor */
void setBeta(const NumericalScalar beta);
NumericalScalar getBeta() const;
/** Reference bandwidth accessor */
void setReferenceBandwidth(const NumericalScalar bandwidth);
NumericalScalar getReferenceBandwidth() const;
/** PDF epsilon accessor. For other distributions, it is a read-only attribute. */
void setPDFPrecision(const NumericalScalar pdfPrecision);
/** CDF epsilon accessor. For other distributions, it is a read-only attribute. */
void setCDFPrecision(const NumericalScalar cdfPrecision);
/** Project a RandomMixture distribution over a collection of DistributionFactory by using sampling and Kolmogorov distance. */
DistributionCollection project(const DistributionFactoryCollection & factoryCollection,
NumericalPoint & kolmogorovNorm,
const UnsignedLong size = DefaultSizeProjection) const;
/** Method save() stores the object through the StorageManager */
void save(StorageManager::Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(StorageManager::Advocate & adv);
private:
class KolmogorovProjection
{
public:
/** Constructor from a distribution and a data set */
KolmogorovProjection(const NumericalSample & data,
const DistributionFactory & factory):
data_(data),
factory_(factory){};
/** Compute the Kolmogorov distance based on the given data, for a given parameter set */
NumericalPoint computeNorm(const NumericalPoint & parameters) const
{
NumericalScalar norm(0.0);
try
{
const Model::Distribution candidate(factory_.build(NumericalPointCollection(1, parameters)));
for (UnsignedLong i = 0; i < data_.getSize(); ++i)
norm += pow(candidate.computeCDF(data_[i][0]) - data_[i][1], 2);
return NumericalPoint(1, norm);
}
catch(...)
{
return NumericalPoint(1, SpecFunc::MaxNumericalScalar);
}
}
/** factory accessor */
void setDistributionFactory(const DistributionFactory & factory)
{
factory_ = factory;
}
private:
NumericalSample data_;
DistributionFactory factory_;
};
/** Compute the numerical range of the distribution given the parameters values */
void computeRange();
/** Compute the safety coefficient for the Poisson algorithm. See documentation for its meaning. */
void computeBeta();
/** Compute the left-hand sum in Poisson's summation formula for the equivalent normal */
NumericalScalar computeEquivalentNormalPDFSum(const NumericalScalar x) const;
NumericalScalar computeEquivalentNormalCDFSum(const NumericalScalar s,
const NumericalScalar t) const;
/** Default constructor for save/load mechanism */
RandomMixture() {};
friend class Base::Common::Factory<RandomMixture>;
public:
/** Get the mean of a randomMixture */
void computeMean() const /* throw(NotDefinedException) */;
/** Get the covariance of a randomMixture */
void computeCovariance() const /* throw(NotDefinedException) */;
/** Get the standard deviation of the distribution */
NumericalPoint getStandardDeviation() const /* throw(NotDefinedException) */;
/** Get the skewness of the distribution */
NumericalPoint getSkewness() const /* throw(NotDefinedException) */;
/** Get the kurtosis of the distribution */
NumericalPoint getKurtosis() const /* throw(NotDefinedException) */;
/** Compute the position indicator */
void computePositionIndicator() const;
/** Compute the dispersion indicator */
void computeDispersionIndicator() const;
private:
/** Adjust a given bandwidth with respect to a reference bandwidth,
in order to be an integral divisor or multiple of the reference bandwidth */
NumericalScalar adjustBandwidth(const NumericalScalar bandwidth) const;
/** Compute the reference bandwidth. It is defined as the maximum bandwidth
that allow a precise computation of the PDF over the range
[positionIndicator_ +/- beta * dispersionIndicator_] */
void computeReferenceBandwidth();
/** Compute the equivalent normal distribution, i.e. with the same mean and
the same standard deviation */
void computeEquivalentNormal();
/** The collection of distribution of the randomMixture */
DistributionPersistentCollection distributionCollection_;
/** The constant term of the mixture */
NumericalScalar constant_;
/** Position indicator */
mutable NumericalScalar positionIndicator_;
mutable Bool isAlreadyComputedPositionIndicator_;
/** Dispersion indicator */
mutable NumericalScalar dispersionIndicator_;
mutable Bool isAlreadyComputedDispersionIndicator_;
/** Minimum number of blocks to consider for PDF and CDF computation */
UnsignedLong blockMin_;
/** Maximum number of blocks to consider for PDF and CDF computation */
UnsignedLong blockMax_;
/** Reference bandwidth */
NumericalScalar referenceBandwidth_;
/** Maximum size of the cache for the CharacteristicFunction values */
UnsignedLong maxSize_;
/** Index of the top of the cache */
mutable UnsignedLong storedSize_;
/** Cache for the characteristic function values */
mutable NumericalComplexPersistentCollection characteristicValuesCache_;
/** A priori range of PDF and CDF argument expressed in dispersionIndicator units */
NumericalScalar alpha_;
/** Distance from the boundary of the a priori range at which the PDF is negligible */
NumericalScalar beta_;
/** Requested precision for PDF computation */
mutable NumericalScalar pdfPrecision_;
/** Requested precision for CDF computation */
mutable NumericalScalar cdfPrecision_;
/** Normal distribution with the same mean and standard deviation than the RandomMixture */
Normal equivalentNormal_;
}; /* class RandomMixture */
} /* namespace Distribution */
} /* namespace Uncertainty */
} /* namespace OpenTURNS */
#endif /* OPENTURNS_RANDOMMIXTURE_HXX */
|