This file is indexed.

/usr/include/openturns/RandomMixture.hxx is in libopenturns-dev 0.15-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
//                                               -*- C++ -*-
/**
 *  @file  RandomMixture.hxx
 *  @brief The class that implements randomMixtures
 *
 *  (C) Copyright 2005-2011 EDF-EADS-Phimeca
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License.
 *
 *  This library is distributed in the hope that it will be useful
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 *  @author: $LastChangedBy: schueller $
 *  @date:   $LastChangedDate: 2011-05-24 19:30:41 +0200 (Tue, 24 May 2011) $
 *  Id:      $Id: RandomMixture.hxx 1910 2011-05-24 17:30:41Z schueller $
 */
#ifndef OPENTURNS_RANDOMMIXTURE_HXX
#define OPENTURNS_RANDOMMIXTURE_HXX

#include "Distribution.hxx"
#include "DistributionFactory.hxx"
#include "DistributionImplementation.hxx"
#include "Exception.hxx"
#include "Collection.hxx"
#include "PersistentCollection.hxx"
#include "SpecFunc.hxx"
#include "Normal.hxx"

namespace OpenTURNS
{

  namespace Uncertainty
  {

    namespace Distribution
    {


      /**
       * @class RandomMixture
       *
       * The class describes the probabilistic concept of RandomMixture.
       */
      class RandomMixture
        : public Model::DistributionImplementation
      {
        CLASSNAME;
      public:

        /** A type for distribution collection. Cannot typedef Distribution as it is also a namespace! */
        typedef Base::Func::SpecFunc                                  SpecFunc;
        typedef Base::Type::Collection<Model::Distribution>           DistributionCollection;
        typedef Base::Type::PersistentCollection<Model::Distribution> DistributionPersistentCollection;
        typedef Base::Type::PersistentCollection<NumericalComplex>    NumericalComplexPersistentCollection;
        typedef Model::DistributionImplementation                     DistributionImplementation;  // required by SWIG
        typedef DistributionImplementation::InvalidArgumentException  InvalidArgumentException;
        typedef DistributionImplementation::NumericalPoint            NumericalPoint;
        typedef DistributionImplementation::NumericalSample           NumericalSample;
        typedef DistributionImplementation::Implementation            Implementation;
        typedef DistributionImplementation::Indices                   Indices;
        typedef DistributionImplementation::NotDefinedException       NotDefinedException;
        typedef DistributionImplementation::NumericalPointWithDescriptionCollection  NumericalPointWithDescriptionCollection;
        typedef DistributionImplementation::StorageManager            StorageManager;
        typedef Model::DistributionFactory                            DistributionFactory;
        typedef Base::Type::Collection<DistributionFactory>           DistributionFactoryCollection;

        // Log2 minimum number of characteristic values to consider to compute PDF and CDF
        static const UnsignedLong DefaultBlockMin; /* = 3 */
        // Log2 maximum number of characteristic values to consider to compute PDF and CDF
        static const UnsignedLong DefaultBlockMax; /* = 16 */
        // Maximum number of values to store
        static const UnsignedLong DefaultMaxSize; /* = 65536 */
        // A priori range in dispersionIndicator units
        static const NumericalScalar DefaultAlpha; /* = 5.0 */
        // Numerical precision for computing the PDF
        static const NumericalScalar DefaultPDFEpsilon; /* = 1e-10 */
        // Numerical precision for computing the CDF
        static const NumericalScalar DefaultCDFEpsilon; /* = 1e-10 */
        // Numerical precision for computing the PDF for graphs
        static const NumericalScalar GraphPDFEpsilon; /* = 1e-5 */
        // Numerical precision for computing the CDF for graphs
        static const NumericalScalar GraphCDFEpsilon; /* = 1e-5 */
        // Size above which a mixture is said to be "large"
        static const UnsignedLong SmallSize; /* = 100 */
        // Sampling size to project the random mixture */
        static const UnsignedLong DefaultSizeProjection; /* = 10000 */


        /** Parameter constructor */
        explicit RandomMixture(const DistributionCollection & coll,
                               const NumericalScalar constant = 0.0)
          /* throw (InvalidArgumentException) */;

        /** Parameter constructor */
        explicit RandomMixture(const DistributionCollection & coll,
                               const NumericalPoint & weights,
                               const NumericalScalar constant = 0.0)
          /* throw (InvalidArgumentException) */;


        /** Comparison operator */
        Bool operator ==(const RandomMixture & other) const;

        /** String converter */
        String __repr__() const;


        /** Distribution collection accessor */
        void setDistributionCollection(const DistributionCollection & coll)
          /* throw (InvalidArgumentException) */;
        const DistributionCollection & getDistributionCollection() const;

        /** Constant accessor */
        void setConstant(const NumericalScalar constant);
        NumericalScalar getConstant() const;



        /* Here is the interface that all derived class must implement */

        /** Virtual constructor */
        virtual RandomMixture * clone() const;

        /** Get one realization of the RandomMixture */
        NumericalPoint getRealization() const;

        /** Get the DDF of the RandomMixture */
        using DistributionImplementation::computeDDF;
        NumericalPoint computeDDF(const NumericalPoint & point) const;

        /** Get the PDF of the RandomMixture */
        using DistributionImplementation::computePDF;
        NumericalScalar computePDF(const NumericalPoint & point) const;

        /** Compute the PDF over a regular grid */
        NumericalSample computePDF(const NumericalScalar xMin,
                                   const NumericalScalar xMax,
                                   const UnsignedLong pointNumber,
                                   const NumericalScalar precision = GraphPDFEpsilon) const;

      protected:

      private:

        /** Quantile computation for dimension=1 */
        NumericalScalar computeScalarQuantile(const NumericalScalar prob,
                                              const Bool tail = false,
                                              const NumericalScalar precision = DefaultQuantileEpsilon) const;

        /** Compute the characteristic function of 1D distributions by difference to a reference Normal distribution with the same mean and the same standard deviation in a regular pattern with cache */
        NumericalComplex computeDeltaCharacteristicFunction(const UnsignedLong index) const;

      public:
        /** Get the CDF of the RandomMixture */
        using DistributionImplementation::computeCDF;
        NumericalScalar computeCDF(const NumericalPoint & point,
                                   const Bool tail = false) const;

        /** Compute the CDF over a regular grid */
        NumericalSample computeCDF(const NumericalScalar xMin,
                                   const NumericalScalar xMax,
                                   const UnsignedLong pointNumber,
                                   const NumericalScalar precision = GraphCDFEpsilon,
                                   const Bool tail = false) const;

        /** Get the probability content of an interval */
        NumericalScalar computeProbability(const Interval & interval) const;

        /** Compute the quantile over a regular grid */
        using DistributionImplementation::computeQuantile;
        NumericalSample computeQuantile(const NumericalScalar qMin,
                                        const NumericalScalar qMax,
                                        const UnsignedLong pointNumber,
                                        const NumericalScalar precision = GraphCDFEpsilon,
                                        const Bool tail = false) const;

        /** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
        using DistributionImplementation::computeCharacteristicFunction;
        NumericalComplex computeCharacteristicFunction(const NumericalScalar x,
                                                       const Bool logScale = false) const;

        /** Get the PDF gradient of the distribution */
        NumericalPoint computePDFGradient(const NumericalPoint & point) const;

        /** Get the CDF gradient of the distribution */
        NumericalPoint computeCDFGradient(const NumericalPoint & point) const;

        /** Parameters value and description accessor */
        NumericalPointWithDescriptionCollection getParametersCollection() const;

        /** Weights distribution accessor */
        void setWeights(const NumericalPoint & weights);
        NumericalPoint getWeights() const;

        /** Get a positon indicator for a 1D distribution */
        NumericalScalar getPositionIndicator() const;

        /** Get a dispersion indicator for a 1D distribution */
        NumericalScalar getDispersionIndicator() const;

        /** BlockMin accessor */
        void setBlockMin(const UnsignedLong blockMin);
        UnsignedLong getBlockMin() const;

        /** BlockMax accessor */
        void setBlockMax(const UnsignedLong blockMax);
        UnsignedLong getBlockMax() const;

        /** MaxSize accessor */
        void setMaxSize(const UnsignedLong maxSize);
        UnsignedLong getMaxSize() const;

        /** Alpha accessor */
        void setAlpha(const NumericalScalar alpha);
        NumericalScalar getAlpha() const;

        /** Beta accessor */
        void setBeta(const NumericalScalar beta);
        NumericalScalar getBeta() const;

        /** Reference bandwidth accessor */
        void setReferenceBandwidth(const NumericalScalar bandwidth);
        NumericalScalar getReferenceBandwidth() const;

        /** PDF epsilon accessor. For other distributions, it is a read-only attribute. */
        void setPDFPrecision(const NumericalScalar pdfPrecision);

        /** CDF epsilon accessor. For other distributions, it is a read-only attribute. */
        void setCDFPrecision(const NumericalScalar cdfPrecision);

        /** Project a RandomMixture distribution over a collection of DistributionFactory by using sampling and Kolmogorov distance. */
        DistributionCollection project(const DistributionFactoryCollection & factoryCollection,
                                       NumericalPoint & kolmogorovNorm,
                                       const UnsignedLong size = DefaultSizeProjection) const;

        /** Method save() stores the object through the StorageManager */
        void save(StorageManager::Advocate & adv) const;

        /** Method load() reloads the object from the StorageManager */
        void load(StorageManager::Advocate & adv);

      private:

        class KolmogorovProjection
        {
        public:
          /** Constructor from a distribution and a data set */
          KolmogorovProjection(const NumericalSample & data,
                               const DistributionFactory & factory):
            data_(data),
            factory_(factory){};

          /** Compute the Kolmogorov distance based on the given data, for a given parameter set */
          NumericalPoint computeNorm(const NumericalPoint & parameters) const
          {
            NumericalScalar norm(0.0);
            try
              {
                const Model::Distribution candidate(factory_.build(NumericalPointCollection(1, parameters)));
                for (UnsignedLong i = 0; i < data_.getSize(); ++i)
                  norm += pow(candidate.computeCDF(data_[i][0]) - data_[i][1], 2);
                return NumericalPoint(1, norm);
              }
            catch(...)
              {
                return NumericalPoint(1, SpecFunc::MaxNumericalScalar);
              }
          }

          /** factory accessor */
          void setDistributionFactory(const DistributionFactory & factory)
          {
            factory_ = factory;
          }
        private:
          NumericalSample data_;
          DistributionFactory factory_;
        };

        /** Compute the numerical range of the distribution given the parameters values */
        void computeRange();

        /** Compute the safety coefficient for the Poisson algorithm. See documentation for its meaning. */
        void computeBeta();

        /** Compute the left-hand sum in Poisson's summation formula for the equivalent normal */
        NumericalScalar computeEquivalentNormalPDFSum(const NumericalScalar x) const;
        NumericalScalar computeEquivalentNormalCDFSum(const NumericalScalar s,
                                                      const NumericalScalar t) const;

        /** Default constructor for save/load mechanism */
        RandomMixture() {};
        friend class Base::Common::Factory<RandomMixture>;

      public:
        /** Get the mean of a randomMixture */
        void computeMean() const /* throw(NotDefinedException) */;

        /** Get the covariance of a randomMixture */
        void computeCovariance() const /* throw(NotDefinedException) */;

        /** Get the standard deviation of the distribution */
        NumericalPoint getStandardDeviation() const /* throw(NotDefinedException) */;

        /** Get the skewness of the distribution */
        NumericalPoint getSkewness() const /* throw(NotDefinedException) */;

        /** Get the kurtosis of the distribution */
        NumericalPoint getKurtosis() const /* throw(NotDefinedException) */;

        /** Compute the position indicator */
        void computePositionIndicator() const;

        /** Compute the dispersion indicator */
        void computeDispersionIndicator() const;

      private:
        /** Adjust a given bandwidth with respect to a reference bandwidth,
            in order to be an integral divisor or multiple of the reference bandwidth */
        NumericalScalar adjustBandwidth(const NumericalScalar bandwidth) const;

        /** Compute the reference bandwidth. It is defined as the maximum bandwidth
            that allow a precise computation of the PDF over the range
            [positionIndicator_ +/- beta * dispersionIndicator_] */
        void computeReferenceBandwidth();

        /** Compute the equivalent normal distribution, i.e. with the same mean and
            the same standard deviation */
        void computeEquivalentNormal();

        /** The collection of distribution of the randomMixture */
        DistributionPersistentCollection distributionCollection_;

        /** The constant term of the mixture */
        NumericalScalar constant_;

        /** Position indicator */
        mutable NumericalScalar positionIndicator_;
        mutable Bool isAlreadyComputedPositionIndicator_;

        /** Dispersion indicator */
        mutable NumericalScalar dispersionIndicator_;
        mutable Bool isAlreadyComputedDispersionIndicator_;

        /** Minimum number of blocks to consider for PDF and CDF computation */
        UnsignedLong blockMin_;

        /** Maximum number of blocks to consider for PDF and CDF computation */
        UnsignedLong blockMax_;

        /** Reference bandwidth */
        NumericalScalar referenceBandwidth_;

        /** Maximum size of the cache for the CharacteristicFunction values */
        UnsignedLong maxSize_;

        /** Index of the top of the cache */
        mutable UnsignedLong storedSize_;

        /** Cache for the characteristic function values */
        mutable NumericalComplexPersistentCollection characteristicValuesCache_;

        /** A priori range of PDF and CDF argument expressed in dispersionIndicator units */
        NumericalScalar alpha_;

        /** Distance from the boundary of the a priori range at which the PDF is negligible */
        NumericalScalar beta_;

        /** Requested precision for PDF computation */
        mutable NumericalScalar pdfPrecision_;

        /** Requested precision for CDF computation */
        mutable NumericalScalar cdfPrecision_;

        /** Normal distribution with the same mean and standard deviation than the RandomMixture */
        Normal equivalentNormal_;

      }; /* class RandomMixture */


    } /* namespace Distribution */
  } /* namespace Uncertainty */
} /* namespace OpenTURNS */

#endif /* OPENTURNS_RANDOMMIXTURE_HXX */