This file is indexed.

/usr/include/openturns/DistributionImplementation.hxx is in libopenturns-dev 0.15-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
//                                               -*- C++ -*-
/**
 *  @file  DistributionImplementation.hxx
 *  @brief Abstract top-level class for all distributions
 *
 *  (C) Copyright 2005-2011 EDF-EADS-Phimeca
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License.
 *
 *  This library is distributed in the hope that it will be useful
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 *  @author: $LastChangedBy: schueller $
 *  @date:   $LastChangedDate: 2011-07-28 18:31:43 +0200 (Thu, 28 Jul 2011) $
 *  Id:      $Id: DistributionImplementation.hxx 2046 2011-07-28 16:31:43Z schueller $
 */
#ifndef OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX
#define OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX

#include "PersistentObject.hxx"
#include "NumericalPoint.hxx"
#include "NumericalPointWithDescription.hxx"
#include "NumericalSample.hxx"
#include "Indices.hxx"
#include "Interval.hxx"
#include "CorrelationMatrix.hxx"
#include "SquareMatrix.hxx"
#include "Graph.hxx"
#include "Description.hxx"
#include "NumericalMathFunction.hxx"
#include "PersistentCollection.hxx"
#include "UniVariatePolynomial.hxx"

namespace OpenTURNS {

  namespace Uncertainty {

    namespace Model {

      /**
       * @class DistributionImplementation
       *
       * The class describes the probabilistic concept of distribution.
       * Instances of this class can produce samples following the
       * distribution, can compute PDF or CDF, etc.
       * They are the actual key component of RandomVectors.
       */
      class DistributionImplementation
        : public Base::Common::PersistentObject
      {
        CLASSNAME;
      public:
        // For drawing PDF and CDF graphs
        static const UnsignedLong DefaultPointNumber; /* = 129 */
        // Numerical precision for computing the quantile
        static const NumericalScalar DefaultQuantileEpsilon; /* = 1e-12 */
        // Numerical precision for computing the PDF
        static const NumericalScalar DefaultPDFEpsilon; /* = 1e-14 */
        // Numerical precision for computing the CDF
        static const NumericalScalar DefaultCDFEpsilon; /* = 1e-14 */
        // Newton iterations for computing the quantile
        static const UnsignedLong DefaultQuantileIteration; /* = 10 */
        // Lower quantile level for drawing
        static const NumericalScalar QMin; /* = 1.5e-1 */
        // Upper quantile level for drawing
        static const NumericalScalar QMax; /* = 8.5e-1 */
        // Default number of integration points for Gauss integration
        static const UnsignedLong DefaultIntegrationNodesNumber; /* = 255 */
        // Default number of level in Sinh Tanh integration method
        static const UnsignedLong DefaultLevelNumber; /* = 10 */
        // Cache size for the scalar quantile cache
        static const UnsignedLong DefaultQuantileCacheSize; /* = 128 */

        typedef Base::Common::InvalidArgumentException            InvalidArgumentException;
        typedef Base::Common::InvalidDimensionException           InvalidDimensionException;
        typedef Base::Common::InternalException                   InternalException;
        typedef Base::Common::NotDefinedException                 NotDefinedException;
	typedef Base::Func::UniVariatePolynomial                  UniVariatePolynomial;
        typedef Base::Type::NumericalPoint                        NumericalPoint;
        typedef Base::Type::NumericalPointWithDescription         NumericalPointWithDescription;
        typedef Base::Stat::NumericalSample                       NumericalSample;
        typedef Base::Stat::CovarianceMatrix                      CovarianceMatrix;
        typedef Base::Stat::CorrelationMatrix                     CorrelationMatrix;
        typedef Base::Type::SquareMatrix                              SquareMatrix;
        typedef Base::Type::Indices                                   Indices;
        typedef Base::Type::Interval                                  Interval;
        typedef Pointer<DistributionImplementation>                   Implementation;
        typedef Base::Func::NumericalMathFunction                     IsoProbabilisticTransformation;
        typedef IsoProbabilisticTransformation                        InverseIsoProbabilisticTransformation;
        typedef Base::Graph::Graph                                    Graph;
        typedef Base::Type::Collection<NumericalPoint>                NumericalPointCollection;
        typedef Base::Type::Collection<NumericalPointWithDescription> NumericalPointWithDescriptionCollection;
        typedef Base::Type::Description                               Description;
        typedef Base::Common::StorageManager                          StorageManager;

        /** Default constructor */
        DistributionImplementation(const String & name = OT::DefaultName);

        /** Comparison operator */
        Bool operator ==(const DistributionImplementation & other) const;

        /** String converter */
        virtual String __repr__() const;
        String __str__(const String & offset = "") const;

        /** Weight accessor */
        void setWeight(NumericalScalar w) /* throw(InvalidArgumentException) */;
        NumericalScalar getWeight() const;

        /** Dimension accessor */
        UnsignedLong getDimension() const;

        /* Here is the interface that all derived class must implement */

        /** Virtual constructor */
        virtual DistributionImplementation * clone() const;

        /** Get one realization of the distributionImplementation */
        virtual NumericalPoint getRealization() const;

        /** Get a numerical sample whose elements follow the distributionImplementation */
        virtual NumericalSample getNumericalSample(const UnsignedLong size) const;

        /** Get the DDF of the distributionImplementation */
        virtual NumericalScalar computeDDF(const NumericalScalar scalar) const;
        virtual NumericalPoint  computeDDF(const NumericalPoint & point) const;
        virtual NumericalSample computeDDF(const NumericalSample & sample) const;

        /** Get the PDF of the distributionImplementation */
        virtual NumericalScalar computePDF(const NumericalScalar scalar) const;
        virtual NumericalScalar computePDF(const NumericalPoint & point) const;
        virtual NumericalSample computePDF(const NumericalSample & sample) const;
        /** Compute the PDF of 1D distributions over a regular grid */
        virtual NumericalSample computePDF(const NumericalScalar xMin,
                                           const NumericalScalar xMax,
                                           const UnsignedLong pointNumber,
                                           const NumericalScalar precision = DefaultPDFEpsilon) const;

        /** Get the CDF of the distributionImplementation */
        virtual NumericalScalar computeCDF(const NumericalScalar scalar,
                                           const Bool tail = false) const;
        virtual NumericalScalar computeCDF(const NumericalPoint & point,
                                           const Bool tail = false) const;
        virtual NumericalSample computeCDF(const NumericalSample & sample,
                                           const Bool tail = false) const;
        /** Compute the CDF of 1D distributions over a regular grid */
        virtual NumericalSample computeCDF(const NumericalScalar xMin,
                                           const NumericalScalar xMax,
                                           const UnsignedLong pointNumber,
                                           const NumericalScalar precision = DefaultPDFEpsilon,
                                           const Bool tail = false) const;



        /** Get the probability content of an interval */
        virtual NumericalScalar computeProbability(const Interval & interval) const;

        /** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
        virtual NumericalComplex computeCharacteristicFunction(const NumericalScalar x,
                                                               const Bool logScale = false) const;

        /** Compute the generating function, i.e. psi(z) = E(z^X) */
        virtual NumericalScalar computeGeneratingFunction(const NumericalScalar z,
                                                          const Bool logScale = false) const;
        virtual NumericalComplex computeGeneratingFunction(const NumericalComplex & z,
                                                           const Bool logScale = false) const;

        /** Get the PDF gradient of the distribution */
        virtual NumericalPoint computePDFGradient(const NumericalPoint & point) const;

        /** Get the CDF gradient of the distribution */
        virtual NumericalPoint computeCDFGradient(const NumericalPoint & point) const;

        /** Get the quantile of the distributionImplementation */
        virtual NumericalPoint computeQuantile(const NumericalScalar prob,
                                               const Bool tail = false) const;
        /** Compute the quantile over a regular grid */
        virtual NumericalSample computeQuantile(const NumericalScalar qMin,
                                                const NumericalScalar qMax,
                                                const UnsignedLong pointNumber,
                                                const NumericalScalar precision = DefaultQuantileEpsilon,
                                                const Bool tail = false) const;

        /** Get the mathematical and numerical range of the distribution.
            Its mathematical range is the smallest closed interval outside
            of which the PDF is zero, and the numerical range is the interval
            outside of which the PDF is rounded to zero in double precision */
        virtual Interval getRange() const;

      protected:
        virtual void setRange(const Interval & range);

      public:
        /** Get the roughness, i.e. the L2-norm of the PDF */
        virtual NumericalScalar getRoughness() const;

        /** Get the mean of the distribution */
        virtual NumericalPoint getMean() const /* throw(NotDefinedException) */;

        /** Get the standard deviation of the distribution */
        virtual NumericalPoint getStandardDeviation() const /* throw(NotDefinedException) */;

        /** Get the skewness of the distribution */
        virtual NumericalPoint getSkewness() const /* throw(NotDefinedException) */;

        /** Get the kurtosis of the distribution */
        virtual NumericalPoint getKurtosis() const /* throw(NotDefinedException) */;

        /** Get the raw moments of the standardized distribution */
        virtual NumericalPoint getStandardMoment(const UnsignedLong n) const;

        /** Get the raw moments of the distribution */
        virtual NumericalPoint getMoment(const UnsignedLong n) const;

        /** Get the centered moments of the distribution */
        virtual NumericalPoint getCenteredMoment(const UnsignedLong n) const;

        /** Get the covariance of the distribution */
        virtual CovarianceMatrix getCovariance() const /* throw(NotDefinedException) */;

        /** Correlation matrix accessor */
        CorrelationMatrix getCorrelation() const;

        /** Cholesky factor of the covariance matrix accessor */
        SquareMatrix getCholesky() const;

        /** Inverse of the Cholesky factor of the covariance matrix accessor */
        SquareMatrix getInverseCholesky() const;

        /** Check if the distribution is elliptical */
        virtual Bool isElliptical() const;

        /** Check if the distribution is constinuous */
        virtual Bool isContinuous() const;

        /** Tell if the distribution is integer valued */
        virtual Bool isIntegral() const;

        /** Tell if the distribution has elliptical copula */
        virtual Bool hasEllipticalCopula() const;

        /** Tell if the distribution has independent copula */
        virtual Bool hasIndependentCopula() const;

        /** Get the support of a distribution that intersect a given interval */
        virtual NumericalSample getSupport(const Interval & interval) const;

        /** Get the support on the whole range */
        virtual NumericalSample getSupport() const;

        /** Compute the density generator of the elliptical generator, i.e.
         *  the function phi such that the density of the distribution can
         *  be written as p(x) = phi(t(x-mu)R(x-mu))                      */
        virtual NumericalScalar computeDensityGenerator(const NumericalScalar betaSquare) const;

        /** Compute the derivative of the density generator */
        virtual NumericalScalar computeDensityGeneratorDerivative(const NumericalScalar betaSquare) const;

        /** Compute the seconde derivative of the density generator */
        virtual NumericalScalar computeDensityGeneratorSecondDerivative(const NumericalScalar betaSquare) const;

        /** Compute the radial distribution CDF */
        virtual NumericalScalar computeRadialDistributionCDF(const NumericalScalar radius,
                                                             const Bool tail = false) const;

        /** Get the i-th marginal distribution */
        virtual DistributionImplementation * getMarginal(const UnsignedLong i) const /* throw(InvalidArgumentException) */;

        /** Get the distribution of the marginal distribution corresponding to indices dimensions */
        virtual DistributionImplementation * getMarginal(const Indices & indices) const /* throw(InvalidArgumentException) */;

        /** Get the copula of a distribution */
        virtual Implementation getCopula() const;

        /** Compute the DDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
        virtual NumericalScalar computeConditionalDDF(const NumericalScalar x,
                                                      const NumericalPoint & y) const;

        /** Compute the PDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
        virtual NumericalScalar computeConditionalPDF(const NumericalScalar x,
                                                      const NumericalPoint & y) const;

        /** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
        virtual NumericalScalar computeConditionalCDF(const NumericalScalar x,
                                                      const NumericalPoint & y) const;

        /** Compute the quantile of Xi | X1, ..., Xi-1, i.e. x such that CDF(x|y) = q with x = Xi, y = (X1,...,Xi-1) */
        virtual NumericalScalar computeConditionalQuantile(const NumericalScalar q,
                                                           const NumericalPoint & y) const;

        /** Get the isoprobabilist transformation */
        virtual IsoProbabilisticTransformation getIsoProbabilisticTransformation() const;

        /** Get the inverse isoprobabilist transformation */
        virtual InverseIsoProbabilisticTransformation getInverseIsoProbabilisticTransformation() const;

        /** Get the standard distribution */
        virtual Implementation getStandardDistribution() const;

        /** integrationNodesNumber accessors */
        UnsignedLong getIntegrationNodesNumber() const;
        void setIntegrationNodesNumber(const UnsignedLong integrationNodesNumber) const;

        /** Gauss nodes and weights accessor */
        NumericalSample getGaussNodesAndWeights() const;
        NumericalPoint getGaussNodesAndWeights(NumericalPoint & weights) const;

        /** Draw the PDF of the distribution when its dimension is 1 or 2 */
        virtual Graph drawPDF() const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;

        /** Draw the PDF of the distribution when its dimension is 1 */
        virtual Graph drawPDF(const NumericalScalar xMin,
                              const NumericalScalar xMax,
                              const UnsignedLong pointNumber = DefaultPointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;
        virtual Graph drawPDF(const UnsignedLong pointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;

        /** Draw the PDF of a 1D marginal */
        virtual Graph drawMarginal1DPDF(const UnsignedLong marginalIndex,
                                        const NumericalScalar xMin,
                                        const NumericalScalar xMax,
                                        const UnsignedLong pointNumber) const
          /* throw(InvalidArgumentException) */;

        /** Draw the PDF of the distribution when its dimension is 2 */
        virtual Graph drawPDF(const NumericalPoint & xMin,
                              const NumericalPoint & xMax,
                              const NumericalPoint & pointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;
        virtual Graph drawPDF(const NumericalPoint & xMin,
                              const NumericalPoint & xMax) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;
        virtual Graph drawPDF(const NumericalPoint & pointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;

        /** Draw the PDF of a 2D marginal */
        virtual Graph drawMarginal2DPDF(const UnsignedLong firstMarginal,
                                        const UnsignedLong secondMarginal,
                                        const NumericalPoint & xMin,
                                        const NumericalPoint & xMax,
                                        const NumericalPoint & pointNumber) const
          /* throw(InvalidArgumentException) */;

        /** Draw the CDF of the distribution when its dimension is 1 or 2 */
        virtual Graph drawCDF() const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;

        /** Draw the CDF of the distribution when its dimension is 1 */
        virtual Graph drawCDF(const NumericalScalar xMin,
                              const NumericalScalar xMax,
                              const UnsignedLong pointNumber = DefaultPointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;
        virtual Graph drawCDF(const UnsignedLong pointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;

        /** Draw the CDF of the distribution when its dimension is 2 */
        virtual Graph drawCDF(const NumericalPoint & xMin,
                              const NumericalPoint & xMax,
                              const NumericalPoint & pointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;
        virtual Graph drawCDF(const NumericalPoint & xMin,
                              const NumericalPoint & xMax) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;
        virtual Graph drawCDF(const NumericalPoint & pointNumber) const
          /* throw(InvalidDimensionException, InvalidArgumentException) */;

        /** Draw the CDF of a 1D marginal */
        virtual Graph drawMarginal1DCDF(const UnsignedLong marginalIndex,
                                        const NumericalScalar xMin,
                                        const NumericalScalar xMax,
                                        const UnsignedLong pointNumber) const
          /* throw(InvalidArgumentException) */;

        /** Draw the CDF of a 2D marginal */
        virtual Graph drawMarginal2DCDF(const UnsignedLong firstMarginal,
                                        const UnsignedLong secondMarginal,
                                        const NumericalPoint & xMin,
                                        const NumericalPoint & xMax,
                                        const NumericalPoint & pointNumber) const
          /* throw(InvalidArgumentException) */;

        /** Parameters value and description accessor */
        virtual NumericalPointWithDescriptionCollection getParametersCollection() const;
        virtual void setParametersCollection(const NumericalPointWithDescriptionCollection & parametersCollection);
        virtual void setParametersCollection(const NumericalPointCollection & parametersCollection);
        virtual void setParametersCollection(const NumericalPoint & parameters);

        /** Total number of parameters */
        virtual UnsignedLong getParametersNumber() const;

        /** Description accessor */
        void setDescription(const Description & description);
        Description getDescription() const;

        /** Method save() stores the object through the StorageManager */
        virtual void save(StorageManager::Advocate & adv) const;

        /** Method load() reloads the object from the StorageManager */
        virtual void load(StorageManager::Advocate & adv);

        /** Accessor to PDF computation precision */
        NumericalScalar getPDFEpsilon() const;

        /** Accessor to CDF computation precision */
        NumericalScalar getCDFEpsilon() const;

        /** Get a positon indicator for a 1D distribution */
        NumericalScalar getPositionIndicator() const;

        /** Get a dispersion indicator for a 1D distribution */
        NumericalScalar getDispersionIndicator() const;

      protected:
        /** Compute the PDF and CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1)
            Used to speed-up the computeConditionalQuantile() method */
        NumericalScalar computeConditionalPDFAndCDF(const NumericalScalar x,
                                                    const NumericalPoint & y,
                                                    NumericalScalar & cdf,
                                                    const Implementation & conditioningDistribution,
                                                    const Implementation & conditionedDistribution,
                                                    const NumericalScalar xMin) const;

        /** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) with reuse of expansive data */
        NumericalScalar computeConditionalCDFForQuantile(const NumericalScalar x,
                                                         const NumericalPoint & y,
                                                         const Implementation & conditioningDistribution,
                                                         const Implementation & conditionedDistribution,
                                                         const NumericalScalar xMin) const;

        /** Compute the characteristic function of 1D distributions in a regular pattern with cache */
        virtual NumericalComplex computeCharacteristicFunction(const UnsignedLong index,
                                                               const NumericalScalar step,
                                                               const Bool logScale = false) const;

        /** Compute the mean of the distribution */
        virtual void computeMean() const;

        /** Compute the covariance of the distribution */
        virtual void computeCovariance() const;

        /** Compute the shifted moments of the distribution */
        virtual NumericalPoint computeShiftedMoment(const UnsignedLong n,
                                                    const NumericalPoint & shift) const;

        /** Compute the nodes and weights of the 1D gauss integration rule over [-1, 1] */
        virtual void computeGaussNodesAndWeights() const;

        /** Dimension accessor */
        void setDimension(UnsignedLong dim);

        /** Quantile computation for dimension=1 */
        virtual NumericalScalar computeScalarQuantile(const NumericalScalar prob,
                                                      const Bool tail = false,
                                                      const NumericalScalar precision = DefaultQuantileEpsilon) const;

        /** Compute the numerical range of the distribution given the parameters values */
        virtual void computeRange();
        virtual NumericalPoint computeLowerBound() const;
        virtual NumericalPoint computeUpperBound() const;

        /** Compute the standard distribution associated with the current distribution */
        virtual void computeStandardDistribution() const;

        mutable NumericalPoint mean_;
        mutable CovarianceMatrix covariance_;
        mutable NumericalSample gaussNodesAndWeights_;

        /** The integration nodes number for covariance computation */
        mutable UnsignedLong integrationNodesNumber_;

        /** Flags to avoid redundant computations */
        mutable Bool isAlreadyComputedMean_;
        mutable Bool isAlreadyComputedCovariance_;
        mutable Bool isAlreadyComputedGaussNodesAndWeights_;

        /** Indicators for PDF and CDF absolute precision. By default, equals to DefaultPDFEpsilon, DefaultCDFEpsilon and DefaultQuantileEpsilon */
        mutable NumericalScalar pdfEpsilon_;
        mutable NumericalScalar cdfEpsilon_;
        mutable NumericalScalar quantileEpsilon_;

        /** Standard distribution */
        mutable Bool isAlreadyComputedStandardDistribution_;
        mutable Implementation p_standardDistribution_;

        /** Optimization to make a call to computeScalarQuantile less costly
            The strategy is to build a cheap approximation of the quantile
            function at the first call to the computeScalarQuantile method
            then to use it to initialize the quantile search
        */
        void initializeQuantileCache() const;
        mutable Bool isAlreadyInitializedQuantileCache_;
        /** Sample that stores some precomputed quantiles: the first component is the probability level, the second component is the scalar quantile value */
        mutable NumericalSample scalarQuantileCache_;

	/** Optimization for the generating function evaluation */
        mutable Bool isAlreadyCreatedGeneratingFunction_;
	mutable UniVariatePolynomial generatingFunction_;

      private:

        /** The dimension of the distributionImplementation */
        UnsignedLong dimension_;

        /** The weight used ONLY by Mixture */
        NumericalScalar weight_;

        /** Range of the distribution */
        Interval range_;

        /** Description of each component */
        Description description_;
      }; /* class DistributionImplementation */


    } /* namespace Model */
  } /* namespace Uncertainty */
} /* namespace OpenTURNS */

#endif /* OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX */