This file is indexed.

/usr/include/osg/Vec3f is in libopenscenegraph-dev 3.0.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield 
 *
 * This library is open source and may be redistributed and/or modified under  
 * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or 
 * (at your option) any later version.  The full license is in LICENSE file
 * included with this distribution, and on the openscenegraph.org website.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 * OpenSceneGraph Public License for more details.
*/

#ifndef OSG_VEC3F
#define OSG_VEC3F 1

#include <osg/Vec2f>
#include <osg/Math>

namespace osg {

/** General purpose float triple for use as vertices, vectors and normals.
  * Provides general math operations from addition through to cross products.
  * No support yet added for float * Vec3f - is it necessary?
  * Need to define a non-member non-friend operator*  etc.
  * Vec3f * float is okay
*/
class Vec3f
{
    public:

        /** Data type of vector components.*/
        typedef float value_type;

        /** Number of vector components. */
        enum { num_components = 3 };
        
        value_type _v[3];

        /** Constructor that sets all components of the vector to zero */
        Vec3f() { _v[0]=0.0f; _v[1]=0.0f; _v[2]=0.0f;}
        Vec3f(value_type x,value_type y,value_type z) { _v[0]=x; _v[1]=y; _v[2]=z; }
        Vec3f(const Vec2f& v2,value_type zz)
        {
            _v[0] = v2[0];
            _v[1] = v2[1];
            _v[2] = zz;
        }


        inline bool operator == (const Vec3f& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2]; }
        
        inline bool operator != (const Vec3f& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2]; }

        inline bool operator <  (const Vec3f& v) const
        {
            if (_v[0]<v._v[0]) return true;
            else if (_v[0]>v._v[0]) return false;
            else if (_v[1]<v._v[1]) return true;
            else if (_v[1]>v._v[1]) return false;
            else return (_v[2]<v._v[2]);
        }

        inline value_type* ptr() { return _v; }
        inline const value_type* ptr() const { return _v; }

        inline void set( value_type x, value_type y, value_type z)
        {
            _v[0]=x; _v[1]=y; _v[2]=z;
        }

        inline void set( const Vec3f& rhs)
        {
            _v[0]=rhs._v[0]; _v[1]=rhs._v[1]; _v[2]=rhs._v[2];
        }

        inline value_type& operator [] (int i) { return _v[i]; }
        inline value_type operator [] (int i) const { return _v[i]; }

        inline value_type& x() { return _v[0]; }
        inline value_type& y() { return _v[1]; }
        inline value_type& z() { return _v[2]; }

        inline value_type x() const { return _v[0]; }
        inline value_type y() const { return _v[1]; }
        inline value_type z() const { return _v[2]; }

        /** Returns true if all components have values that are not NaN. */
        inline bool valid() const { return !isNaN(); }
        /** Returns true if at least one component has value NaN. */
        inline bool isNaN() const { return osg::isNaN(_v[0]) || osg::isNaN(_v[1]) || osg::isNaN(_v[2]); }

        /** Dot product. */
        inline value_type operator * (const Vec3f& rhs) const
        {
            return _v[0]*rhs._v[0]+_v[1]*rhs._v[1]+_v[2]*rhs._v[2];
        }

        /** Cross product. */
        inline const Vec3f operator ^ (const Vec3f& rhs) const
        {
            return Vec3f(_v[1]*rhs._v[2]-_v[2]*rhs._v[1],
                         _v[2]*rhs._v[0]-_v[0]*rhs._v[2] ,
                         _v[0]*rhs._v[1]-_v[1]*rhs._v[0]);
        }

        /** Multiply by scalar. */
        inline const Vec3f operator * (value_type rhs) const
        {
            return Vec3f(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs);
        }

        /** Unary multiply by scalar. */
        inline Vec3f& operator *= (value_type rhs)
        {
            _v[0]*=rhs;
            _v[1]*=rhs;
            _v[2]*=rhs;
            return *this;
        }

        /** Divide by scalar. */
        inline const Vec3f operator / (value_type rhs) const
        {
            return Vec3f(_v[0]/rhs, _v[1]/rhs, _v[2]/rhs);
        }

        /** Unary divide by scalar. */
        inline Vec3f& operator /= (value_type rhs)
        {
            _v[0]/=rhs;
            _v[1]/=rhs;
            _v[2]/=rhs;
            return *this;
        }

        /** Binary vector add. */
        inline const Vec3f operator + (const Vec3f& rhs) const
        {
            return Vec3f(_v[0]+rhs._v[0], _v[1]+rhs._v[1], _v[2]+rhs._v[2]);
        }

        /** Unary vector add. Slightly more efficient because no temporary
          * intermediate object.
        */
        inline Vec3f& operator += (const Vec3f& rhs)
        {
            _v[0] += rhs._v[0];
            _v[1] += rhs._v[1];
            _v[2] += rhs._v[2];
            return *this;
        }

        /** Binary vector subtract. */
        inline const Vec3f operator - (const Vec3f& rhs) const
        {
            return Vec3f(_v[0]-rhs._v[0], _v[1]-rhs._v[1], _v[2]-rhs._v[2]);
        }

        /** Unary vector subtract. */
        inline Vec3f& operator -= (const Vec3f& rhs)
        {
            _v[0]-=rhs._v[0];
            _v[1]-=rhs._v[1];
            _v[2]-=rhs._v[2];
            return *this;
        }

        /** Negation operator. Returns the negative of the Vec3f. */
        inline const Vec3f operator - () const
        {
            return Vec3f (-_v[0], -_v[1], -_v[2]);
        }

        /** Length of the vector = sqrt( vec . vec ) */
        inline value_type length() const
        {
            return sqrtf( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
        }

        /** Length squared of the vector = vec . vec */
        inline value_type length2() const
        {
            return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2];
        }

        /** Normalize the vector so that it has length unity.
          * Returns the previous length of the vector.
        */
        inline value_type normalize()
        {
            value_type norm = Vec3f::length();
            if (norm>0.0)
            {
                value_type inv = 1.0f/norm;
                _v[0] *= inv;
                _v[1] *= inv;
                _v[2] *= inv;
            }                
            return( norm );
        }

};    // end of class Vec3f

/** multiply by vector components. */
inline Vec3f componentMultiply(const Vec3f& lhs, const Vec3f& rhs)
{
    return Vec3f(lhs[0]*rhs[0], lhs[1]*rhs[1], lhs[2]*rhs[2]);
}

/** divide rhs components by rhs vector components. */
inline Vec3f componentDivide(const Vec3f& lhs, const Vec3f& rhs)
{
    return Vec3f(lhs[0]/rhs[0], lhs[1]/rhs[1], lhs[2]/rhs[2]);
}

const Vec3f X_AXIS(1.0,0.0,0.0);
const Vec3f Y_AXIS(0.0,1.0,0.0);
const Vec3f Z_AXIS(0.0,0.0,1.0);

}    // end of namespace osg

#endif