/usr/include/opencv2/video/background_segm.hpp is in libopencv-video-dev 2.3.1-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | /*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_BACKGROUND_SEGM_HPP__
#define __OPENCV_BACKGROUND_SEGM_HPP__
#include "opencv2/core/core.hpp"
#ifdef __cplusplus
extern "C" {
#endif
/****************************************************************************************\
* Background/foreground segmentation *
\****************************************************************************************/
/* We discriminate between foreground and background pixels
* by building and maintaining a model of the background.
* Any pixel which does not fit this model is then deemed
* to be foreground.
*
* At present we support two core background models,
* one of which has two variations:
*
* o CV_BG_MODEL_FGD: latest and greatest algorithm, described in
*
* Foreground Object Detection from Videos Containing Complex Background.
* Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
* ACM MM2003 9p
*
* o CV_BG_MODEL_FGD_SIMPLE:
* A code comment describes this as a simplified version of the above,
* but the code is in fact currently identical
*
* o CV_BG_MODEL_MOG: "Mixture of Gaussians", older algorithm, described in
*
* Moving target classification and tracking from real-time video.
* A Lipton, H Fujijoshi, R Patil
* Proceedings IEEE Workshop on Application of Computer Vision pp 8-14 1998
*
* Learning patterns of activity using real-time tracking
* C Stauffer and W Grimson August 2000
* IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8):747-757
*/
#define CV_BG_MODEL_FGD 0
#define CV_BG_MODEL_MOG 1 /* "Mixture of Gaussians". */
#define CV_BG_MODEL_FGD_SIMPLE 2
struct CvBGStatModel;
typedef void (CV_CDECL * CvReleaseBGStatModel)( struct CvBGStatModel** bg_model );
typedef int (CV_CDECL * CvUpdateBGStatModel)( IplImage* curr_frame, struct CvBGStatModel* bg_model,
double learningRate );
#define CV_BG_STAT_MODEL_FIELDS() \
int type; /*type of BG model*/ \
CvReleaseBGStatModel release; \
CvUpdateBGStatModel update; \
IplImage* background; /*8UC3 reference background image*/ \
IplImage* foreground; /*8UC1 foreground image*/ \
IplImage** layers; /*8UC3 reference background image, can be null */ \
int layer_count; /* can be zero */ \
CvMemStorage* storage; /*storage for foreground_regions*/ \
CvSeq* foreground_regions /*foreground object contours*/
typedef struct CvBGStatModel
{
CV_BG_STAT_MODEL_FIELDS();
} CvBGStatModel;
//
// Releases memory used by BGStatModel
CVAPI(void) cvReleaseBGStatModel( CvBGStatModel** bg_model );
// Updates statistical model and returns number of found foreground regions
CVAPI(int) cvUpdateBGStatModel( IplImage* current_frame, CvBGStatModel* bg_model,
double learningRate CV_DEFAULT(-1));
// Performs FG post-processing using segmentation
// (all pixels of a region will be classified as foreground if majority of pixels of the region are FG).
// parameters:
// segments - pointer to result of segmentation (for example MeanShiftSegmentation)
// bg_model - pointer to CvBGStatModel structure
CVAPI(void) cvRefineForegroundMaskBySegm( CvSeq* segments, CvBGStatModel* bg_model );
/* Common use change detection function */
CVAPI(int) cvChangeDetection( IplImage* prev_frame,
IplImage* curr_frame,
IplImage* change_mask );
/*
Interface of ACM MM2003 algorithm
*/
/* Default parameters of foreground detection algorithm: */
#define CV_BGFG_FGD_LC 128
#define CV_BGFG_FGD_N1C 15
#define CV_BGFG_FGD_N2C 25
#define CV_BGFG_FGD_LCC 64
#define CV_BGFG_FGD_N1CC 25
#define CV_BGFG_FGD_N2CC 40
/* Background reference image update parameter: */
#define CV_BGFG_FGD_ALPHA_1 0.1f
/* stat model update parameter
* 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
*/
#define CV_BGFG_FGD_ALPHA_2 0.005f
/* start value for alpha parameter (to fast initiate statistic model) */
#define CV_BGFG_FGD_ALPHA_3 0.1f
#define CV_BGFG_FGD_DELTA 2
#define CV_BGFG_FGD_T 0.9f
#define CV_BGFG_FGD_MINAREA 15.f
#define CV_BGFG_FGD_BG_UPDATE_TRESH 0.5f
/* See the above-referenced Li/Huang/Gu/Tian paper
* for a full description of these background-model
* tuning parameters.
*
* Nomenclature: 'c' == "color", a three-component red/green/blue vector.
* We use histograms of these to model the range of
* colors we've seen at a given background pixel.
*
* 'cc' == "color co-occurrence", a six-component vector giving
* RGB color for both this frame and preceding frame.
* We use histograms of these to model the range of
* color CHANGES we've seen at a given background pixel.
*/
typedef struct CvFGDStatModelParams
{
int Lc; /* Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. */
int N1c; /* Number of color vectors used to model normal background color variation at a given pixel. */
int N2c; /* Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. */
/* Used to allow the first N1c vectors to adapt over time to changing background. */
int Lcc; /* Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. */
int N1cc; /* Number of color co-occurrence vectors used to model normal background color variation at a given pixel. */
int N2cc; /* Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. */
/* Used to allow the first N1cc vectors to adapt over time to changing background. */
int is_obj_without_holes;/* If TRUE we ignore holes within foreground blobs. Defaults to TRUE. */
int perform_morphing; /* Number of erode-dilate-erode foreground-blob cleanup iterations. */
/* These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. */
float alpha1; /* How quickly we forget old background pixel values seen. Typically set to 0.1 */
float alpha2; /* "Controls speed of feature learning". Depends on T. Typical value circa 0.005. */
float alpha3; /* Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. */
float delta; /* Affects color and color co-occurrence quantization, typically set to 2. */
float T; /* "A percentage value which determines when new features can be recognized as new background." (Typically 0.9).*/
float minArea; /* Discard foreground blobs whose bounding box is smaller than this threshold. */
} CvFGDStatModelParams;
typedef struct CvBGPixelCStatTable
{
float Pv, Pvb;
uchar v[3];
} CvBGPixelCStatTable;
typedef struct CvBGPixelCCStatTable
{
float Pv, Pvb;
uchar v[6];
} CvBGPixelCCStatTable;
typedef struct CvBGPixelStat
{
float Pbc;
float Pbcc;
CvBGPixelCStatTable* ctable;
CvBGPixelCCStatTable* cctable;
uchar is_trained_st_model;
uchar is_trained_dyn_model;
} CvBGPixelStat;
typedef struct CvFGDStatModel
{
CV_BG_STAT_MODEL_FIELDS();
CvBGPixelStat* pixel_stat;
IplImage* Ftd;
IplImage* Fbd;
IplImage* prev_frame;
CvFGDStatModelParams params;
} CvFGDStatModel;
/* Creates FGD model */
CVAPI(CvBGStatModel*) cvCreateFGDStatModel( IplImage* first_frame,
CvFGDStatModelParams* parameters CV_DEFAULT(NULL));
/*
Interface of Gaussian mixture algorithm
"An improved adaptive background mixture model for real-time tracking with shadow detection"
P. KadewTraKuPong and R. Bowden,
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
*/
/* Note: "MOG" == "Mixture Of Gaussians": */
#define CV_BGFG_MOG_MAX_NGAUSSIANS 500
/* default parameters of gaussian background detection algorithm */
#define CV_BGFG_MOG_BACKGROUND_THRESHOLD 0.7 /* threshold sum of weights for background test */
#define CV_BGFG_MOG_STD_THRESHOLD 2.5 /* lambda=2.5 is 99% */
#define CV_BGFG_MOG_WINDOW_SIZE 200 /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
#define CV_BGFG_MOG_NGAUSSIANS 5 /* = K = number of Gaussians in mixture */
#define CV_BGFG_MOG_WEIGHT_INIT 0.05
#define CV_BGFG_MOG_SIGMA_INIT 30
#define CV_BGFG_MOG_MINAREA 15.f
#define CV_BGFG_MOG_NCOLORS 3
typedef struct CvGaussBGStatModelParams
{
int win_size; /* = 1/alpha */
int n_gauss;
double bg_threshold, std_threshold, minArea;
double weight_init, variance_init;
}CvGaussBGStatModelParams;
typedef struct CvGaussBGValues
{
int match_sum;
double weight;
double variance[CV_BGFG_MOG_NCOLORS];
double mean[CV_BGFG_MOG_NCOLORS];
} CvGaussBGValues;
typedef struct CvGaussBGPoint
{
CvGaussBGValues* g_values;
} CvGaussBGPoint;
typedef struct CvGaussBGModel
{
CV_BG_STAT_MODEL_FIELDS();
CvGaussBGStatModelParams params;
CvGaussBGPoint* g_point;
int countFrames;
} CvGaussBGModel;
/* Creates Gaussian mixture background model */
CVAPI(CvBGStatModel*) cvCreateGaussianBGModel( IplImage* first_frame,
CvGaussBGStatModelParams* parameters CV_DEFAULT(NULL));
typedef struct CvBGCodeBookElem
{
struct CvBGCodeBookElem* next;
int tLastUpdate;
int stale;
uchar boxMin[3];
uchar boxMax[3];
uchar learnMin[3];
uchar learnMax[3];
} CvBGCodeBookElem;
typedef struct CvBGCodeBookModel
{
CvSize size;
int t;
uchar cbBounds[3];
uchar modMin[3];
uchar modMax[3];
CvBGCodeBookElem** cbmap;
CvMemStorage* storage;
CvBGCodeBookElem* freeList;
} CvBGCodeBookModel;
CVAPI(CvBGCodeBookModel*) cvCreateBGCodeBookModel();
CVAPI(void) cvReleaseBGCodeBookModel( CvBGCodeBookModel** model );
CVAPI(void) cvBGCodeBookUpdate( CvBGCodeBookModel* model, const CvArr* image,
CvRect roi CV_DEFAULT(cvRect(0,0,0,0)),
const CvArr* mask CV_DEFAULT(0) );
CVAPI(int) cvBGCodeBookDiff( const CvBGCodeBookModel* model, const CvArr* image,
CvArr* fgmask, CvRect roi CV_DEFAULT(cvRect(0,0,0,0)) );
CVAPI(void) cvBGCodeBookClearStale( CvBGCodeBookModel* model, int staleThresh,
CvRect roi CV_DEFAULT(cvRect(0,0,0,0)),
const CvArr* mask CV_DEFAULT(0) );
CVAPI(CvSeq*) cvSegmentFGMask( CvArr *fgmask, int poly1Hull0 CV_DEFAULT(1),
float perimScale CV_DEFAULT(4.f),
CvMemStorage* storage CV_DEFAULT(0),
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
#ifdef __cplusplus
}
namespace cv
{
/*!
The Base Class for Background/Foreground Segmentation
The class is only used to define the common interface for
the whole family of background/foreground segmentation algorithms.
*/
class CV_EXPORTS_W BackgroundSubtractor
{
public:
//! the virtual destructor
virtual ~BackgroundSubtractor();
//! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
CV_WRAP_AS(apply) virtual void operator()(InputArray image, OutputArray fgmask,
double learningRate=0);
//! computes a background image
virtual void getBackgroundImage(OutputArray backgroundImage) const;
};
/*!
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
The class implements the following algorithm:
"An improved adaptive background mixture model for real-time tracking with shadow detection"
P. KadewTraKuPong and R. Bowden,
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
*/
class CV_EXPORTS_W BackgroundSubtractorMOG : public BackgroundSubtractor
{
public:
//! the default constructor
CV_WRAP BackgroundSubtractorMOG();
//! the full constructor that takes the length of the history, the number of gaussian mixtures, the background ratio parameter and the noise strength
CV_WRAP BackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma=0);
//! the destructor
virtual ~BackgroundSubtractorMOG();
//! the update operator
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=0);
//! re-initiaization method
virtual void initialize(Size frameSize, int frameType);
Size frameSize;
int frameType;
Mat bgmodel;
int nframes;
int history;
int nmixtures;
double varThreshold;
double backgroundRatio;
double noiseSigma;
};
class CV_EXPORTS BackgroundSubtractorMOG2 : public BackgroundSubtractor
{
public:
//! the default constructor
BackgroundSubtractorMOG2();
//! the full constructor that takes the length of the history, the number of gaussian mixtures, the background ratio parameter and the noise strength
BackgroundSubtractorMOG2(int history, float varThreshold, bool bShadowDetection=1);
//! the destructor
virtual ~BackgroundSubtractorMOG2();
//! the update operator
virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1);
//! computes a background image which are the mean of all background gaussians
virtual void getBackgroundImage(OutputArray backgroundImage) const;
//! re-initiaization method
virtual void initialize(Size frameSize, int frameType);
Size frameSize;
int frameType;
Mat bgmodel;
Mat bgmodelUsedModes;//keep track of number of modes per pixel
int nframes;
int history;
int nmixtures;
//! here it is the maximum allowed number of mixture comonents.
//! Actual number is determined dynamically per pixel
float varThreshold;
// threshold on the squared Mahalan. dist. to decide if it is well described
//by the background model or not. Related to Cthr from the paper.
//This does not influence the update of the background. A typical value could be 4 sigma
//and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
/////////////////////////
//less important parameters - things you might change but be carefull
////////////////////////
float backgroundRatio;
//corresponds to fTB=1-cf from the paper
//TB - threshold when the component becomes significant enough to be included into
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
//it is considered foreground
//float noiseSigma;
float varThresholdGen;
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide
//when a sample is close to the existing components. If it is not close
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
//Smaller Tg leads to more generated components and higher Tg might make
//lead to small number of components but they can grow too large
float fVarInit;
float fVarMin;
float fVarMax;
//initial variance for the newly generated components.
//It will will influence the speed of adaptation. A good guess should be made.
//A simple way is to estimate the typical standard deviation from the images.
//I used here 10 as a reasonable value
// min and max can be used to further control the variance
float fCT;//CT - complexity reduction prior
//this is related to the number of samples needed to accept that a component
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
//shadow detection parameters
bool bShadowDetection;//default 1 - do shadow detection
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
float fTau;
// Tau - shadow threshold. The shadow is detected if the pixel is darker
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
};
}
#endif
#endif
|