/usr/include/opencv2/objdetect/objdetect.hpp is in libopencv-objdetect-dev 2.3.1-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | /*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_OBJDETECT_HPP__
#define __OPENCV_OBJDETECT_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#ifdef __cplusplus
extern "C" {
#endif
/****************************************************************************************\
* Haar-like Object Detection functions *
\****************************************************************************************/
#define CV_HAAR_MAGIC_VAL 0x42500000
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
#define CV_IS_HAAR_CLASSIFIER( haar ) \
((haar) != NULL && \
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
#define CV_HAAR_FEATURE_MAX 3
typedef struct CvHaarFeature
{
int tilted;
struct
{
CvRect r;
float weight;
} rect[CV_HAAR_FEATURE_MAX];
} CvHaarFeature;
typedef struct CvHaarClassifier
{
int count;
CvHaarFeature* haar_feature;
float* threshold;
int* left;
int* right;
float* alpha;
} CvHaarClassifier;
typedef struct CvHaarStageClassifier
{
int count;
float threshold;
CvHaarClassifier* classifier;
int next;
int child;
int parent;
} CvHaarStageClassifier;
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
typedef struct CvHaarClassifierCascade
{
int flags;
int count;
CvSize orig_window_size;
CvSize real_window_size;
double scale;
CvHaarStageClassifier* stage_classifier;
CvHidHaarClassifierCascade* hid_cascade;
} CvHaarClassifierCascade;
typedef struct CvAvgComp
{
CvRect rect;
int neighbors;
} CvAvgComp;
/* Loads haar classifier cascade from a directory.
It is obsolete: convert your cascade to xml and use cvLoad instead */
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
const char* directory, CvSize orig_window_size);
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
#define CV_HAAR_DO_CANNY_PRUNING 1
#define CV_HAAR_SCALE_IMAGE 2
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
#define CV_HAAR_DO_ROUGH_SEARCH 8
//CVAPI(CvSeq*) cvHaarDetectObjectsForROC( const CvArr* image,
// CvHaarClassifierCascade* cascade, CvMemStorage* storage,
// CvSeq** rejectLevels, CvSeq** levelWeightds,
// double scale_factor CV_DEFAULT(1.1),
// int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
// CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
// bool outputRejectLevels = false );
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
double scale_factor CV_DEFAULT(1.1),
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
/* sets images for haar classifier cascade */
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
const CvArr* sum, const CvArr* sqsum,
const CvArr* tilted_sum, double scale );
/* runs the cascade on the specified window */
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
CvPoint pt, int start_stage CV_DEFAULT(0));
/****************************************************************************************\
* Latent SVM Object Detection functions *
\****************************************************************************************/
// DataType: STRUCT position
// Structure describes the position of the filter in the feature pyramid
// l - level in the feature pyramid
// (x, y) - coordinate in level l
typedef struct
{
int x;
int y;
int l;
} CvLSVMFilterPosition;
// DataType: STRUCT filterObject
// Description of the filter, which corresponds to the part of the object
// V - ideal (penalty = 0) position of the partial filter
// from the root filter position (V_i in the paper)
// penaltyFunction - vector describes penalty function (d_i in the paper)
// pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
// FILTER DESCRIPTION
// Rectangular map (sizeX x sizeY),
// every cell stores feature vector (dimension = p)
// H - matrix of feature vectors
// to set and get feature vectors (i,j)
// used formula H[(j * sizeX + i) * p + k], where
// k - component of feature vector in cell (i, j)
// END OF FILTER DESCRIPTION
typedef struct{
CvLSVMFilterPosition V;
float fineFunction[4];
int sizeX;
int sizeY;
int numFeatures;
float *H;
} CvLSVMFilterObject;
// data type: STRUCT CvLatentSvmDetector
// structure contains internal representation of trained Latent SVM detector
// num_filters - total number of filters (root plus part) in model
// num_components - number of components in model
// num_part_filters - array containing number of part filters for each component
// filters - root and part filters for all model components
// b - biases for all model components
// score_threshold - confidence level threshold
typedef struct CvLatentSvmDetector
{
int num_filters;
int num_components;
int* num_part_filters;
CvLSVMFilterObject** filters;
float* b;
float score_threshold;
}
CvLatentSvmDetector;
// data type: STRUCT CvObjectDetection
// structure contains the bounding box and confidence level for detected object
// rect - bounding box for a detected object
// score - confidence level
typedef struct CvObjectDetection
{
CvRect rect;
float score;
} CvObjectDetection;
//////////////// Object Detection using Latent SVM //////////////
/*
// load trained detector from a file
//
// API
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename - path to the file containing the parameters of
- trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
*/
CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);
/*
// release memory allocated for CvLatentSvmDetector structure
//
// API
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// INPUT
// detector - CvLatentSvmDetector structure to be released
// OUTPUT
*/
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
/*
// find rectangular regions in the given image that are likely
// to contain objects and corresponding confidence levels
//
// API
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
// CvLatentSvmDetector* detector,
// CvMemStorage* storage,
// float overlap_threshold = 0.5f,
// int numThreads = -1);
// INPUT
// image - image to detect objects in
// detector - Latent SVM detector in internal representation
// storage - memory storage to store the resultant sequence
// of the object candidate rectangles
// overlap_threshold - threshold for the non-maximum suppression algorithm
= 0.5f [here will be the reference to original paper]
// OUTPUT
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
*/
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
CvLatentSvmDetector* detector,
CvMemStorage* storage,
float overlap_threshold CV_DEFAULT(0.5f),
int numThreads CV_DEFAULT(-1));
#ifdef __cplusplus
}
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
double scale_factor CV_DEFAULT(1.1),
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
bool outputRejectLevels = false );
namespace cv
{
///////////////////////////// Object Detection ////////////////////////////
CV_EXPORTS void groupRectangles(CV_OUT CV_IN_OUT vector<Rect>& rectList, int groupThreshold, double eps=0.2);
CV_EXPORTS_W void groupRectangles(CV_OUT CV_IN_OUT vector<Rect>& rectList, CV_OUT vector<int>& weights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles( vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights );
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels,
vector<double>& levelWeights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales,
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
class CV_EXPORTS FeatureEvaluator
{
public:
enum { HAAR = 0, LBP = 1 };
virtual ~FeatureEvaluator();
virtual bool read(const FileNode& node);
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const;
virtual bool setImage(const Mat&, Size origWinSize);
virtual bool setWindow(Point p);
virtual double calcOrd(int featureIdx) const;
virtual int calcCat(int featureIdx) const;
static Ptr<FeatureEvaluator> create(int type);
};
template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
enum
{
CASCADE_DO_CANNY_PRUNING=1,
CASCADE_SCALE_IMAGE=2,
CASCADE_FIND_BIGGEST_OBJECT=4,
CASCADE_DO_ROUGH_SEARCH=8
};
class CV_EXPORTS_W CascadeClassifier
{
public:
CV_WRAP CascadeClassifier();
CV_WRAP CascadeClassifier( const string& filename );
virtual ~CascadeClassifier();
CV_WRAP virtual bool empty() const;
CV_WRAP bool load( const string& filename );
virtual bool read( const FileNode& node );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT vector<Rect>& objects,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT vector<Rect>& objects,
vector<int>& rejectLevels,
vector<double>& levelWeights,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size(),
bool outputRejectLevels=false );
bool isOldFormatCascade() const;
virtual Size getOriginalWindowSize() const;
int getFeatureType() const;
bool setImage( const Mat& );
protected:
//virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
// int stripSize, int yStep, double factor, vector<Rect>& candidates );
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, vector<Rect>& candidates,
vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false);
protected:
enum { BOOST = 0 };
enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };
friend struct CascadeClassifierInvoker;
template<class FEval>
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
bool setImage( Ptr<FeatureEvaluator>&, const Mat& );
virtual int runAt( Ptr<FeatureEvaluator>&, Point, double& weight );
class Data
{
public:
struct CV_EXPORTS DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct CV_EXPORTS DTree
{
int nodeCount;
};
struct CV_EXPORTS Stage
{
int first;
int ntrees;
float threshold;
};
bool read(const FileNode &node);
bool isStumpBased;
int stageType;
int featureType;
int ncategories;
Size origWinSize;
vector<Stage> stages;
vector<DTree> classifiers;
vector<DTreeNode> nodes;
vector<float> leaves;
vector<int> subsets;
};
Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade;
};
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
struct CV_EXPORTS_W HOGDescriptor
{
public:
enum { L2Hys=0 };
enum { DEFAULT_NLEVELS=64 };
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
{}
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
int _histogramNormType=HOGDescriptor::L2Hys,
double _L2HysThreshold=0.2, bool _gammaCorrection=false,
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
gammaCorrection(_gammaCorrection), nlevels(_nlevels)
{}
CV_WRAP HOGDescriptor(const String& filename)
{
load(filename);
}
HOGDescriptor(const HOGDescriptor& d)
{
d.copyTo(*this);
}
virtual ~HOGDescriptor() {}
CV_WRAP size_t getDescriptorSize() const;
CV_WRAP bool checkDetectorSize() const;
CV_WRAP double getWinSigma() const;
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
virtual bool read(FileNode& fn);
virtual void write(FileStorage& fs, const String& objname) const;
CV_WRAP virtual bool load(const String& filename, const String& objname=String());
CV_WRAP virtual void save(const String& filename, const String& objname=String()) const;
virtual void copyTo(HOGDescriptor& c) const;
CV_WRAP virtual void compute(const Mat& img,
CV_OUT vector<float>& descriptors,
Size winStride=Size(), Size padding=Size(),
const vector<Point>& locations=vector<Point>()) const;
//with found weights output
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
vector<double>& weights,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(),
const vector<Point>& searchLocations=vector<Point>()) const;
//without found weights output
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(),
const vector<Point>& searchLocations=vector<Point>()) const;
//with result weights output
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
vector<double>& foundWeights, double hitThreshold=0,
Size winStride=Size(), Size padding=Size(), double scale=1.05,
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
//without found weights output
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(), double scale=1.05,
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
Size paddingTL=Size(), Size paddingBR=Size()) const;
CV_WRAP static vector<float> getDefaultPeopleDetector();
CV_WRAP static vector<float> getDaimlerPeopleDetector();
CV_PROP Size winSize;
CV_PROP Size blockSize;
CV_PROP Size blockStride;
CV_PROP Size cellSize;
CV_PROP int nbins;
CV_PROP int derivAperture;
CV_PROP double winSigma;
CV_PROP int histogramNormType;
CV_PROP double L2HysThreshold;
CV_PROP bool gammaCorrection;
CV_PROP vector<float> svmDetector;
CV_PROP int nlevels;
};
/****************************************************************************************\
* Planar Object Detection *
\****************************************************************************************/
class CV_EXPORTS PlanarObjectDetector
{
public:
PlanarObjectDetector();
PlanarObjectDetector(const FileNode& node);
PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300,
int _patchSize=FernClassifier::PATCH_SIZE,
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
int _nviews=FernClassifier::DEFAULT_VIEWS,
const LDetector& detector=LDetector(),
const PatchGenerator& patchGenerator=PatchGenerator());
virtual ~PlanarObjectDetector();
virtual void train(const vector<Mat>& pyr, int _npoints=300,
int _patchSize=FernClassifier::PATCH_SIZE,
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
int _nviews=FernClassifier::DEFAULT_VIEWS,
const LDetector& detector=LDetector(),
const PatchGenerator& patchGenerator=PatchGenerator());
virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
int _patchSize=FernClassifier::PATCH_SIZE,
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
int _nviews=FernClassifier::DEFAULT_VIEWS,
const LDetector& detector=LDetector(),
const PatchGenerator& patchGenerator=PatchGenerator());
Rect getModelROI() const;
vector<KeyPoint> getModelPoints() const;
const LDetector& getDetector() const;
const FernClassifier& getClassifier() const;
void setVerbose(bool verbose);
void read(const FileNode& node);
void write(FileStorage& fs, const String& name=String()) const;
bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const;
bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
CV_OUT Mat& H, CV_OUT vector<Point2f>& corners,
CV_OUT vector<int>* pairs=0) const;
protected:
bool verbose;
Rect modelROI;
vector<KeyPoint> modelPoints;
LDetector ldetector;
FernClassifier fernClassifier;
};
struct CV_EXPORTS DataMatrixCode {
char msg[4]; //TODO std::string
Mat original;
Point corners[4]; //TODO vector
};
CV_EXPORTS void findDataMatrix(const Mat& image, std::vector<DataMatrixCode>& codes);
CV_EXPORTS void drawDataMatrixCodes(const std::vector<DataMatrixCode>& codes, Mat& drawImage);
}
/****************************************************************************************\
* Datamatrix *
\****************************************************************************************/
struct CV_EXPORTS CvDataMatrixCode {
char msg[4];
CvMat *original;
CvMat *corners;
};
#include <deque>
CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
#endif
#endif
|