This file is indexed.

/usr/include/opencv2/objdetect/objdetect.hpp is in libopencv-objdetect-dev 2.3.1-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_OBJDETECT_HPP__
#define __OPENCV_OBJDETECT_HPP__

#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"

#ifdef __cplusplus
extern "C" {
#endif

/****************************************************************************************\
*                         Haar-like Object Detection functions                           *
\****************************************************************************************/

#define CV_HAAR_MAGIC_VAL    0x42500000
#define CV_TYPE_NAME_HAAR    "opencv-haar-classifier"

#define CV_IS_HAAR_CLASSIFIER( haar )                                                    \
    ((haar) != NULL &&                                                                   \
    (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)

#define CV_HAAR_FEATURE_MAX  3

typedef struct CvHaarFeature
{
    int tilted;
    struct
    {
        CvRect r;
        float weight;
    } rect[CV_HAAR_FEATURE_MAX];
} CvHaarFeature;

typedef struct CvHaarClassifier
{
    int count;
    CvHaarFeature* haar_feature;
    float* threshold;
    int* left;
    int* right;
    float* alpha;
} CvHaarClassifier;

typedef struct CvHaarStageClassifier
{
    int  count;
    float threshold;
    CvHaarClassifier* classifier;

    int next;
    int child;
    int parent;
} CvHaarStageClassifier;

typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;

typedef struct CvHaarClassifierCascade
{
    int  flags;
    int  count;
    CvSize orig_window_size;
    CvSize real_window_size;
    double scale;
    CvHaarStageClassifier* stage_classifier;
    CvHidHaarClassifierCascade* hid_cascade;
} CvHaarClassifierCascade;

typedef struct CvAvgComp
{
    CvRect rect;
    int neighbors;
} CvAvgComp;

/* Loads haar classifier cascade from a directory.
   It is obsolete: convert your cascade to xml and use cvLoad instead */
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
                    const char* directory, CvSize orig_window_size);

CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );

#define CV_HAAR_DO_CANNY_PRUNING    1
#define CV_HAAR_SCALE_IMAGE         2
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
#define CV_HAAR_DO_ROUGH_SEARCH     8

//CVAPI(CvSeq*) cvHaarDetectObjectsForROC( const CvArr* image,
//                     CvHaarClassifierCascade* cascade, CvMemStorage* storage,
//                     CvSeq** rejectLevels, CvSeq** levelWeightds,
//                     double scale_factor CV_DEFAULT(1.1),
//                     int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
//                     CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
//                     bool outputRejectLevels = false );


CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
                     CvHaarClassifierCascade* cascade, CvMemStorage* storage, 
                     double scale_factor CV_DEFAULT(1.1),
                     int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
                     CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));

/* sets images for haar classifier cascade */
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
                                                const CvArr* sum, const CvArr* sqsum,
                                                const CvArr* tilted_sum, double scale );

/* runs the cascade on the specified window */
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
                                       CvPoint pt, int start_stage CV_DEFAULT(0));


/****************************************************************************************\
*                         Latent SVM Object Detection functions                          *
\****************************************************************************************/

// DataType: STRUCT position
// Structure describes the position of the filter in the feature pyramid
// l - level in the feature pyramid
// (x, y) - coordinate in level l
typedef struct
{
    int x;
    int y;
    int l;
} CvLSVMFilterPosition;

// DataType: STRUCT filterObject
// Description of the filter, which corresponds to the part of the object
// V               - ideal (penalty = 0) position of the partial filter
//                   from the root filter position (V_i in the paper)
// penaltyFunction - vector describes penalty function (d_i in the paper)
//                   pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
// FILTER DESCRIPTION
//   Rectangular map (sizeX x sizeY), 
//   every cell stores feature vector (dimension = p)
// H               - matrix of feature vectors
//                   to set and get feature vectors (i,j) 
//                   used formula H[(j * sizeX + i) * p + k], where
//                   k - component of feature vector in cell (i, j)
// END OF FILTER DESCRIPTION
typedef struct{
    CvLSVMFilterPosition V;
    float fineFunction[4];
    int sizeX;
    int sizeY;
    int numFeatures;
    float *H;
} CvLSVMFilterObject;

// data type: STRUCT CvLatentSvmDetector
// structure contains internal representation of trained Latent SVM detector
// num_filters			- total number of filters (root plus part) in model 
// num_components		- number of components in model
// num_part_filters		- array containing number of part filters for each component
// filters				- root and part filters for all model components
// b					- biases for all model components
// score_threshold		- confidence level threshold
typedef struct CvLatentSvmDetector
{
	int num_filters;
	int num_components;
	int* num_part_filters;
	CvLSVMFilterObject** filters;
	float* b;
	float score_threshold;
}
CvLatentSvmDetector;

// data type: STRUCT CvObjectDetection
// structure contains the bounding box and confidence level for detected object 
// rect					- bounding box for a detected object
// score				- confidence level 
typedef struct CvObjectDetection
{
	CvRect rect;
	float score;
} CvObjectDetection;

//////////////// Object Detection using Latent SVM //////////////


/*
// load trained detector from a file
//
// API
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename				- path to the file containing the parameters of
						- trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
*/
CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);

/*
// release memory allocated for CvLatentSvmDetector structure
//
// API
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// INPUT
// detector				- CvLatentSvmDetector structure to be released
// OUTPUT
*/
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);

/*
// find rectangular regions in the given image that are likely 
// to contain objects and corresponding confidence levels
//
// API
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image, 
//									CvLatentSvmDetector* detector, 
//									CvMemStorage* storage, 
//									float overlap_threshold = 0.5f,
//                                  int numThreads = -1);
// INPUT
// image				- image to detect objects in
// detector				- Latent SVM detector in internal representation
// storage				- memory storage to store the resultant sequence 
//							of the object candidate rectangles
// overlap_threshold	- threshold for the non-maximum suppression algorithm 
                           = 0.5f [here will be the reference to original paper]
// OUTPUT
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
*/
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image, 
								CvLatentSvmDetector* detector, 
								CvMemStorage* storage, 
								float overlap_threshold CV_DEFAULT(0.5f),
                                int numThreads CV_DEFAULT(-1));

#ifdef __cplusplus
}

CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
                     CvHaarClassifierCascade* cascade, CvMemStorage* storage,
                     std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
                     double scale_factor CV_DEFAULT(1.1),
                     int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
                     CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
                     bool outputRejectLevels = false );

namespace cv
{
	
///////////////////////////// Object Detection ////////////////////////////

CV_EXPORTS void groupRectangles(CV_OUT CV_IN_OUT vector<Rect>& rectList, int groupThreshold, double eps=0.2);
CV_EXPORTS_W void groupRectangles(CV_OUT CV_IN_OUT vector<Rect>& rectList, CV_OUT vector<int>& weights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles( vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights );
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels, 
                                vector<double>& levelWeights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales, 
										  double detectThreshold = 0.0, Size winDetSize = Size(64, 128));

        
class CV_EXPORTS FeatureEvaluator
{
public:    
    enum { HAAR = 0, LBP = 1 };
    virtual ~FeatureEvaluator();

    virtual bool read(const FileNode& node);
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const;
    
    virtual bool setImage(const Mat&, Size origWinSize);
    virtual bool setWindow(Point p);

    virtual double calcOrd(int featureIdx) const;
    virtual int calcCat(int featureIdx) const;

    static Ptr<FeatureEvaluator> create(int type);
};

template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();

enum
{
	CASCADE_DO_CANNY_PRUNING=1,
	CASCADE_SCALE_IMAGE=2,
	CASCADE_FIND_BIGGEST_OBJECT=4,
	CASCADE_DO_ROUGH_SEARCH=8
};

class CV_EXPORTS_W CascadeClassifier
{
public:
    CV_WRAP CascadeClassifier();
    CV_WRAP CascadeClassifier( const string& filename );
    virtual ~CascadeClassifier();
    
    CV_WRAP virtual bool empty() const;
    CV_WRAP bool load( const string& filename );
    virtual bool read( const FileNode& node );
    CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT vector<Rect>& objects,
                                   double scaleFactor=1.1,
                                   int minNeighbors=3, int flags=0,
                                   Size minSize=Size(),
                                   Size maxSize=Size() );

    CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT vector<Rect>& objects,
                                   vector<int>& rejectLevels,
                                   vector<double>& levelWeights,
                                   double scaleFactor=1.1,
                                   int minNeighbors=3, int flags=0,
                                   Size minSize=Size(),
                                   Size maxSize=Size(),
                                   bool outputRejectLevels=false );


    bool isOldFormatCascade() const;
    virtual Size getOriginalWindowSize() const;
    int getFeatureType() const;
    bool setImage( const Mat& );

protected:
    //virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
    //                                int stripSize, int yStep, double factor, vector<Rect>& candidates );

    virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
                                    int stripSize, int yStep, double factor, vector<Rect>& candidates,
                                    vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false);

protected:
    enum { BOOST = 0 };
    enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
           FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };

    friend struct CascadeClassifierInvoker;

    template<class FEval>
    friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    bool setImage( Ptr<FeatureEvaluator>&, const Mat& );
    virtual int runAt( Ptr<FeatureEvaluator>&, Point, double& weight );

    class Data
    {
    public:
        struct CV_EXPORTS DTreeNode
        {
            int featureIdx;
            float threshold; // for ordered features only
            int left;
            int right;
        };

        struct CV_EXPORTS DTree
        {
            int nodeCount;
        };

        struct CV_EXPORTS Stage
        {
            int first;
            int ntrees;
            float threshold;
        };

        bool read(const FileNode &node);

        bool isStumpBased;

        int stageType;
        int featureType;
        int ncategories;
        Size origWinSize;

        vector<Stage> stages;
        vector<DTree> classifiers;
        vector<DTreeNode> nodes;
        vector<float> leaves;
        vector<int> subsets;
    };

    Data data;
    Ptr<FeatureEvaluator> featureEvaluator;
    Ptr<CvHaarClassifierCascade> oldCascade;
};

    
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////

struct CV_EXPORTS_W HOGDescriptor
{
public:
    enum { L2Hys=0 };
    enum { DEFAULT_NLEVELS=64 };
    
    CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
    	cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), 
        nlevels(HOGDescriptor::DEFAULT_NLEVELS)
    {}
    
    CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
                  Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
                  int _histogramNormType=HOGDescriptor::L2Hys,
                  double _L2HysThreshold=0.2, bool _gammaCorrection=false,
                  int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
    : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
    nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
    histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
    gammaCorrection(_gammaCorrection), nlevels(_nlevels)
    {}
    
    CV_WRAP HOGDescriptor(const String& filename)
    {
        load(filename);
    }
    
    HOGDescriptor(const HOGDescriptor& d)
    {
        d.copyTo(*this);
    }
    
    virtual ~HOGDescriptor() {}
    
    CV_WRAP size_t getDescriptorSize() const;
    CV_WRAP bool checkDetectorSize() const;
    CV_WRAP double getWinSigma() const;
    
    CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
    
    virtual bool read(FileNode& fn);
    virtual void write(FileStorage& fs, const String& objname) const;
    
    CV_WRAP virtual bool load(const String& filename, const String& objname=String());
    CV_WRAP virtual void save(const String& filename, const String& objname=String()) const;
    virtual void copyTo(HOGDescriptor& c) const;

    CV_WRAP virtual void compute(const Mat& img,
                         CV_OUT vector<float>& descriptors,
                         Size winStride=Size(), Size padding=Size(),
                         const vector<Point>& locations=vector<Point>()) const;
	//with found weights output
    CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations, 
						vector<double>& weights,
                        double hitThreshold=0, Size winStride=Size(), 
						Size padding=Size(),
                        const vector<Point>& searchLocations=vector<Point>()) const;
	//without found weights output
    CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
                        double hitThreshold=0, Size winStride=Size(),
                        Size padding=Size(),
                        const vector<Point>& searchLocations=vector<Point>()) const;
	//with result weights output
    CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations, 
								  vector<double>& foundWeights, double hitThreshold=0, 
								  Size winStride=Size(), Size padding=Size(), double scale=1.05, 
								  double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
	//without found weights output
	CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations, 
								  double hitThreshold=0, Size winStride=Size(),
                                  Size padding=Size(), double scale=1.05, 
								  double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;

    CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
                                 Size paddingTL=Size(), Size paddingBR=Size()) const;
    
    CV_WRAP static vector<float> getDefaultPeopleDetector();
	CV_WRAP static vector<float> getDaimlerPeopleDetector();
    
    CV_PROP Size winSize;
    CV_PROP Size blockSize;
    CV_PROP Size blockStride;
    CV_PROP Size cellSize;
    CV_PROP int nbins;
    CV_PROP int derivAperture;
    CV_PROP double winSigma;
    CV_PROP int histogramNormType;
    CV_PROP double L2HysThreshold;
    CV_PROP bool gammaCorrection;
    CV_PROP vector<float> svmDetector;
    CV_PROP int nlevels;
};

/****************************************************************************************\
*                                Planar Object Detection                                 *
\****************************************************************************************/

class CV_EXPORTS PlanarObjectDetector
{
public:
    PlanarObjectDetector();
    PlanarObjectDetector(const FileNode& node);
    PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300,
                         int _patchSize=FernClassifier::PATCH_SIZE,
                         int _nstructs=FernClassifier::DEFAULT_STRUCTS,
                         int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
                         int _nviews=FernClassifier::DEFAULT_VIEWS,
                         const LDetector& detector=LDetector(),
                         const PatchGenerator& patchGenerator=PatchGenerator());
    virtual ~PlanarObjectDetector();
    virtual void train(const vector<Mat>& pyr, int _npoints=300,
                       int _patchSize=FernClassifier::PATCH_SIZE,
                       int _nstructs=FernClassifier::DEFAULT_STRUCTS,
                       int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
                       int _nviews=FernClassifier::DEFAULT_VIEWS,
                       const LDetector& detector=LDetector(),
                       const PatchGenerator& patchGenerator=PatchGenerator());
    virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
                       int _patchSize=FernClassifier::PATCH_SIZE,
                       int _nstructs=FernClassifier::DEFAULT_STRUCTS,
                       int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
                       int _nviews=FernClassifier::DEFAULT_VIEWS,
                       const LDetector& detector=LDetector(),
                       const PatchGenerator& patchGenerator=PatchGenerator());
    Rect getModelROI() const;
    vector<KeyPoint> getModelPoints() const;
    const LDetector& getDetector() const;
    const FernClassifier& getClassifier() const;
    void setVerbose(bool verbose);

    void read(const FileNode& node);
    void write(FileStorage& fs, const String& name=String()) const;
    bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const;
    bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
                                       CV_OUT Mat& H, CV_OUT vector<Point2f>& corners,
                                       CV_OUT vector<int>* pairs=0) const;

protected:
    bool verbose;
    Rect modelROI;
    vector<KeyPoint> modelPoints;
    LDetector ldetector;
    FernClassifier fernClassifier;
};

struct CV_EXPORTS DataMatrixCode {
  char msg[4]; //TODO std::string
  Mat original;
  Point corners[4]; //TODO vector
};

CV_EXPORTS void findDataMatrix(const Mat& image, std::vector<DataMatrixCode>& codes);
CV_EXPORTS  void drawDataMatrixCodes(const std::vector<DataMatrixCode>& codes, Mat& drawImage);
}

/****************************************************************************************\
*                                Datamatrix                                              *
\****************************************************************************************/

struct CV_EXPORTS CvDataMatrixCode {
  char msg[4];
  CvMat *original;
  CvMat *corners;
};

#include <deque>
CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
#endif

#endif