This file is indexed.

/usr/include/opencv2/flann/result_set.h is in libopencv-flann-dev 2.3.1-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef FLANN_RESULTSET_H
#define FLANN_RESULTSET_H

#include <algorithm>
#include <cstring>
#include <iostream>
#include <limits>
#include <set>
#include <vector>

namespace cvflann
{

/* This record represents a branch point when finding neighbors in
    the tree.  It contains a record of the minimum distance to the query
    point, as well as the node at which the search resumes.
 */

template <typename T, typename DistanceType>
struct BranchStruct
{
    T node;           /* Tree node at which search resumes */
    DistanceType mindist;     /* Minimum distance to query for all nodes below. */

    BranchStruct() {}
    BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}

    bool operator<(const BranchStruct<T, DistanceType>& rhs) const
    {
        return mindist<rhs.mindist;
    }
};


template <typename DistanceType>
class ResultSet
{
public:
    virtual ~ResultSet() {}

    virtual bool full() const = 0;

    virtual void addPoint(DistanceType dist, int index) = 0;

    virtual DistanceType worstDist() const = 0;

};

/**
 * KNNSimpleResultSet does not ensure that the element it holds are unique.
 * Is used in those cases where the nearest neighbour algorithm used does not
 * attempt to insert the same element multiple times.
 */
template <typename DistanceType>
class KNNSimpleResultSet : public ResultSet<DistanceType>
{
    int* indices;
    DistanceType* dists;
    int capacity;
    int count;
    DistanceType worst_distance_;

public:
    KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
    {
    }

    void init(int* indices_, DistanceType* dists_)
    {
        indices = indices_;
        dists = dists_;
        count = 0;
        worst_distance_ = (std::numeric_limits<DistanceType>::max)();
        dists[capacity-1] = worst_distance_;
    }

    size_t size() const
    {
        return count;
    }

    bool full() const
    {
        return count == capacity;
    }


    void addPoint(DistanceType dist, int index)
    {
        if (dist >= worst_distance_) return;
        int i;
        for (i=count; i>0; --i) {
#ifdef FLANN_FIRST_MATCH
            if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
#else
            if (dists[i-1]>dist)
#endif
            {
                if (i<capacity) {
                    dists[i] = dists[i-1];
                    indices[i] = indices[i-1];
                }
            }
            else break;
        }
        if (count < capacity) ++count;
        dists[i] = dist;
        indices[i] = index;
        worst_distance_ = dists[capacity-1];
    }

    DistanceType worstDist() const
    {
        return worst_distance_;
    }
};

/**
 * K-Nearest neighbour result set. Ensures that the elements inserted are unique
 */
template <typename DistanceType>
class KNNResultSet : public ResultSet<DistanceType>
{
    int* indices;
    DistanceType* dists;
    int capacity;
    int count;
    DistanceType worst_distance_;

public:
    KNNResultSet(int capacity_) : capacity(capacity_), count(0)
    {
    }

    void init(int* indices_, DistanceType* dists_)
    {
        indices = indices_;
        dists = dists_;
        count = 0;
        worst_distance_ = (std::numeric_limits<DistanceType>::max)();
        dists[capacity-1] = worst_distance_;
    }

    size_t size() const
    {
        return count;
    }

    bool full() const
    {
        return count == capacity;
    }


    void addPoint(DistanceType dist, int index)
    {
        if (dist >= worst_distance_) return;
        int i;
        for (i = count; i > 0; --i) {
#ifdef FLANN_FIRST_MATCH
            if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
#else
            if (dists[i-1]<=dist)
#endif
            {
                // Check for duplicate indices
                int j = i - 1;
                while ((j >= 0) && (dists[j] == dist)) {
                    if (indices[j] == index) {
                        return;
                    }
                    --j;
                }
                break;
            }
        }

        if (count < capacity) ++count;
        for (int j = count-1; j > i; --j) {
            dists[j] = dists[j-1];
            indices[j] = indices[j-1];
        }
        dists[i] = dist;
        indices[i] = index;
        worst_distance_ = dists[capacity-1];
    }

    DistanceType worstDist() const
    {
        return worst_distance_;
    }
};


/**
 * A result-set class used when performing a radius based search.
 */
template <typename DistanceType>
class RadiusResultSet : public ResultSet<DistanceType>
{
    DistanceType radius;
    int* indices;
    DistanceType* dists;
    size_t capacity;
    size_t count;

public:
    RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
        radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
    {
        init();
    }

    ~RadiusResultSet()
    {
    }

    void init()
    {
        count = 0;
    }

    size_t size() const
    {
        return count;
    }

    bool full() const
    {
        return true;
    }

    void addPoint(DistanceType dist, int index)
    {
        if (dist<radius) {
            if ((capacity>0)&&(count < capacity)) {
                dists[count] = dist;
                indices[count] = index;
            }
            count++;
        }
    }

    DistanceType worstDist() const
    {
        return radius;
    }

};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the k NN neighbors
 * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
 */
template<typename DistanceType>
class UniqueResultSet : public ResultSet<DistanceType>
{
public:
    struct DistIndex
    {
        DistIndex(DistanceType dist, unsigned int index) :
            dist_(dist), index_(index)
        {
        }
        bool operator<(const DistIndex dist_index) const
        {
            return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
        }
        DistanceType dist_;
        unsigned int index_;
    };

    /** Default cosntructor */
    UniqueResultSet() :
        worst_distance_(std::numeric_limits<DistanceType>::max())
    {
    }

    /** Check the status of the set
     * @return true if we have k NN
     */
    inline bool full() const
    {
        return is_full_;
    }

    /** Remove all elements in the set
     */
    virtual void clear() = 0;

    /** Copy the set to two C arrays
     * @param indices pointer to a C array of indices
     * @param dist pointer to a C array of distances
     * @param n_neighbors the number of neighbors to copy
     */
    virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
    {
        if (n_neighbors < 0) {
            for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
                     dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
                *indices = dist_index->index_;
                *dist = dist_index->dist_;
            }
        }
        else {
            int i = 0;
            for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
                     dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
                *indices = dist_index->index_;
                *dist = dist_index->dist_;
            }
        }
    }

    /** Copy the set to two C arrays but sort it according to the distance first
     * @param indices pointer to a C array of indices
     * @param dist pointer to a C array of distances
     * @param n_neighbors the number of neighbors to copy
     */
    virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
    {
        copy(indices, dist, n_neighbors);
    }

    /** The number of neighbors in the set
     * @return
     */
    size_t size() const
    {
        return dist_indices_.size();
    }

    /** The distance of the furthest neighbor
     * If we don't have enough neighbors, it returns the max possible value
     * @return
     */
    inline DistanceType worstDist() const
    {
        return worst_distance_;
    }
protected:
    /** Flag to say if the set is full */
    bool is_full_;

    /** The worst distance found so far */
    DistanceType worst_distance_;

    /** The best candidates so far */
    std::set<DistIndex> dist_indices_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the k NN neighbors
 * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
 */
template<typename DistanceType>
class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
    /** Constructor
     * @param capacity the number of neighbors to store at max
     */
    KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
    {
        this->is_full_ = false;
        this->clear();
    }

    /** Add a possible candidate to the best neighbors
     * @param dist distance for that neighbor
     * @param index index of that neighbor
     */
    inline void addPoint(DistanceType dist, int index)
    {
        // Don't do anything if we are worse than the worst
        if (dist >= worst_distance_) return;
        dist_indices_.insert(DistIndex(dist, index));

        if (is_full_) {
            if (dist_indices_.size() > capacity_) {
                dist_indices_.erase(*dist_indices_.rbegin());
                worst_distance_ = dist_indices_.rbegin()->dist_;
            }
        }
        else if (dist_indices_.size() == capacity_) {
            is_full_ = true;
            worst_distance_ = dist_indices_.rbegin()->dist_;
        }
    }

    /** Remove all elements in the set
     */
    void clear()
    {
        dist_indices_.clear();
        worst_distance_ = std::numeric_limits<DistanceType>::max();
        is_full_ = false;
    }

protected:
    typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
    using UniqueResultSet<DistanceType>::is_full_;
    using UniqueResultSet<DistanceType>::worst_distance_;
    using UniqueResultSet<DistanceType>::dist_indices_;

    /** The number of neighbors to keep */
    unsigned int capacity_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the radius nearest neighbors
 * It is more accurate than RadiusResult as it is not limited in the number of neighbors
 */
template<typename DistanceType>
class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
    /** Constructor
     * @param capacity the number of neighbors to store at max
     */
    RadiusUniqueResultSet(DistanceType radius) :
        radius_(radius)
    {
        is_full_ = true;
    }

    /** Add a possible candidate to the best neighbors
     * @param dist distance for that neighbor
     * @param index index of that neighbor
     */
    void addPoint(DistanceType dist, int index)
    {
        if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
    }

    /** Remove all elements in the set
     */
    inline void clear()
    {
        dist_indices_.clear();
    }


    /** Check the status of the set
     * @return alwys false
     */
    inline bool full() const
    {
        return true;
    }

    /** The distance of the furthest neighbor
     * If we don't have enough neighbors, it returns the max possible value
     * @return
     */
    inline DistanceType worstDist() const
    {
        return radius_;
    }
private:
    typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
    using UniqueResultSet<DistanceType>::dist_indices_;
    using UniqueResultSet<DistanceType>::is_full_;

    /** The furthest distance a neighbor can be */
    DistanceType radius_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the k NN neighbors within a radius distance
 */
template<typename DistanceType>
class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
{
public:
    /** Constructor
     * @param capacity the number of neighbors to store at max
     */
    KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
    {
        this->capacity_ = capacity;
        this->radius_ = radius;
        this->dist_indices_.reserve(capacity_);
        this->clear();
    }

    /** Remove all elements in the set
     */
    void clear()
    {
        dist_indices_.clear();
        worst_distance_ = radius_;
        is_full_ = false;
    }
private:
    using KNNUniqueResultSet<DistanceType>::dist_indices_;
    using KNNUniqueResultSet<DistanceType>::is_full_;
    using KNNUniqueResultSet<DistanceType>::worst_distance_;

    /** The maximum number of neighbors to consider */
    unsigned int capacity_;

    /** The maximum distance of a neighbor */
    DistanceType radius_;
};
}

#endif //FLANN_RESULTSET_H