/usr/include/opencv2/flann/result_set.h is in libopencv-flann-dev 2.3.1-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | /***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_RESULTSET_H
#define FLANN_RESULTSET_H
#include <algorithm>
#include <cstring>
#include <iostream>
#include <limits>
#include <set>
#include <vector>
namespace cvflann
{
/* This record represents a branch point when finding neighbors in
the tree. It contains a record of the minimum distance to the query
point, as well as the node at which the search resumes.
*/
template <typename T, typename DistanceType>
struct BranchStruct
{
T node; /* Tree node at which search resumes */
DistanceType mindist; /* Minimum distance to query for all nodes below. */
BranchStruct() {}
BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
bool operator<(const BranchStruct<T, DistanceType>& rhs) const
{
return mindist<rhs.mindist;
}
};
template <typename DistanceType>
class ResultSet
{
public:
virtual ~ResultSet() {}
virtual bool full() const = 0;
virtual void addPoint(DistanceType dist, int index) = 0;
virtual DistanceType worstDist() const = 0;
};
/**
* KNNSimpleResultSet does not ensure that the element it holds are unique.
* Is used in those cases where the nearest neighbour algorithm used does not
* attempt to insert the same element multiple times.
*/
template <typename DistanceType>
class KNNSimpleResultSet : public ResultSet<DistanceType>
{
int* indices;
DistanceType* dists;
int capacity;
int count;
DistanceType worst_distance_;
public:
KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
{
}
void init(int* indices_, DistanceType* dists_)
{
indices = indices_;
dists = dists_;
count = 0;
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
dists[capacity-1] = worst_distance_;
}
size_t size() const
{
return count;
}
bool full() const
{
return count == capacity;
}
void addPoint(DistanceType dist, int index)
{
if (dist >= worst_distance_) return;
int i;
for (i=count; i>0; --i) {
#ifdef FLANN_FIRST_MATCH
if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
#else
if (dists[i-1]>dist)
#endif
{
if (i<capacity) {
dists[i] = dists[i-1];
indices[i] = indices[i-1];
}
}
else break;
}
if (count < capacity) ++count;
dists[i] = dist;
indices[i] = index;
worst_distance_ = dists[capacity-1];
}
DistanceType worstDist() const
{
return worst_distance_;
}
};
/**
* K-Nearest neighbour result set. Ensures that the elements inserted are unique
*/
template <typename DistanceType>
class KNNResultSet : public ResultSet<DistanceType>
{
int* indices;
DistanceType* dists;
int capacity;
int count;
DistanceType worst_distance_;
public:
KNNResultSet(int capacity_) : capacity(capacity_), count(0)
{
}
void init(int* indices_, DistanceType* dists_)
{
indices = indices_;
dists = dists_;
count = 0;
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
dists[capacity-1] = worst_distance_;
}
size_t size() const
{
return count;
}
bool full() const
{
return count == capacity;
}
void addPoint(DistanceType dist, int index)
{
if (dist >= worst_distance_) return;
int i;
for (i = count; i > 0; --i) {
#ifdef FLANN_FIRST_MATCH
if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
#else
if (dists[i-1]<=dist)
#endif
{
// Check for duplicate indices
int j = i - 1;
while ((j >= 0) && (dists[j] == dist)) {
if (indices[j] == index) {
return;
}
--j;
}
break;
}
}
if (count < capacity) ++count;
for (int j = count-1; j > i; --j) {
dists[j] = dists[j-1];
indices[j] = indices[j-1];
}
dists[i] = dist;
indices[i] = index;
worst_distance_ = dists[capacity-1];
}
DistanceType worstDist() const
{
return worst_distance_;
}
};
/**
* A result-set class used when performing a radius based search.
*/
template <typename DistanceType>
class RadiusResultSet : public ResultSet<DistanceType>
{
DistanceType radius;
int* indices;
DistanceType* dists;
size_t capacity;
size_t count;
public:
RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
{
init();
}
~RadiusResultSet()
{
}
void init()
{
count = 0;
}
size_t size() const
{
return count;
}
bool full() const
{
return true;
}
void addPoint(DistanceType dist, int index)
{
if (dist<radius) {
if ((capacity>0)&&(count < capacity)) {
dists[count] = dist;
indices[count] = index;
}
count++;
}
}
DistanceType worstDist() const
{
return radius;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the k NN neighbors
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
*/
template<typename DistanceType>
class UniqueResultSet : public ResultSet<DistanceType>
{
public:
struct DistIndex
{
DistIndex(DistanceType dist, unsigned int index) :
dist_(dist), index_(index)
{
}
bool operator<(const DistIndex dist_index) const
{
return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
}
DistanceType dist_;
unsigned int index_;
};
/** Default cosntructor */
UniqueResultSet() :
worst_distance_(std::numeric_limits<DistanceType>::max())
{
}
/** Check the status of the set
* @return true if we have k NN
*/
inline bool full() const
{
return is_full_;
}
/** Remove all elements in the set
*/
virtual void clear() = 0;
/** Copy the set to two C arrays
* @param indices pointer to a C array of indices
* @param dist pointer to a C array of distances
* @param n_neighbors the number of neighbors to copy
*/
virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
{
if (n_neighbors < 0) {
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
*indices = dist_index->index_;
*dist = dist_index->dist_;
}
}
else {
int i = 0;
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
*indices = dist_index->index_;
*dist = dist_index->dist_;
}
}
}
/** Copy the set to two C arrays but sort it according to the distance first
* @param indices pointer to a C array of indices
* @param dist pointer to a C array of distances
* @param n_neighbors the number of neighbors to copy
*/
virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
{
copy(indices, dist, n_neighbors);
}
/** The number of neighbors in the set
* @return
*/
size_t size() const
{
return dist_indices_.size();
}
/** The distance of the furthest neighbor
* If we don't have enough neighbors, it returns the max possible value
* @return
*/
inline DistanceType worstDist() const
{
return worst_distance_;
}
protected:
/** Flag to say if the set is full */
bool is_full_;
/** The worst distance found so far */
DistanceType worst_distance_;
/** The best candidates so far */
std::set<DistIndex> dist_indices_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the k NN neighbors
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
*/
template<typename DistanceType>
class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
/** Constructor
* @param capacity the number of neighbors to store at max
*/
KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
{
this->is_full_ = false;
this->clear();
}
/** Add a possible candidate to the best neighbors
* @param dist distance for that neighbor
* @param index index of that neighbor
*/
inline void addPoint(DistanceType dist, int index)
{
// Don't do anything if we are worse than the worst
if (dist >= worst_distance_) return;
dist_indices_.insert(DistIndex(dist, index));
if (is_full_) {
if (dist_indices_.size() > capacity_) {
dist_indices_.erase(*dist_indices_.rbegin());
worst_distance_ = dist_indices_.rbegin()->dist_;
}
}
else if (dist_indices_.size() == capacity_) {
is_full_ = true;
worst_distance_ = dist_indices_.rbegin()->dist_;
}
}
/** Remove all elements in the set
*/
void clear()
{
dist_indices_.clear();
worst_distance_ = std::numeric_limits<DistanceType>::max();
is_full_ = false;
}
protected:
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
using UniqueResultSet<DistanceType>::is_full_;
using UniqueResultSet<DistanceType>::worst_distance_;
using UniqueResultSet<DistanceType>::dist_indices_;
/** The number of neighbors to keep */
unsigned int capacity_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the radius nearest neighbors
* It is more accurate than RadiusResult as it is not limited in the number of neighbors
*/
template<typename DistanceType>
class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
/** Constructor
* @param capacity the number of neighbors to store at max
*/
RadiusUniqueResultSet(DistanceType radius) :
radius_(radius)
{
is_full_ = true;
}
/** Add a possible candidate to the best neighbors
* @param dist distance for that neighbor
* @param index index of that neighbor
*/
void addPoint(DistanceType dist, int index)
{
if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
}
/** Remove all elements in the set
*/
inline void clear()
{
dist_indices_.clear();
}
/** Check the status of the set
* @return alwys false
*/
inline bool full() const
{
return true;
}
/** The distance of the furthest neighbor
* If we don't have enough neighbors, it returns the max possible value
* @return
*/
inline DistanceType worstDist() const
{
return radius_;
}
private:
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
using UniqueResultSet<DistanceType>::dist_indices_;
using UniqueResultSet<DistanceType>::is_full_;
/** The furthest distance a neighbor can be */
DistanceType radius_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the k NN neighbors within a radius distance
*/
template<typename DistanceType>
class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
{
public:
/** Constructor
* @param capacity the number of neighbors to store at max
*/
KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
{
this->capacity_ = capacity;
this->radius_ = radius;
this->dist_indices_.reserve(capacity_);
this->clear();
}
/** Remove all elements in the set
*/
void clear()
{
dist_indices_.clear();
worst_distance_ = radius_;
is_full_ = false;
}
private:
using KNNUniqueResultSet<DistanceType>::dist_indices_;
using KNNUniqueResultSet<DistanceType>::is_full_;
using KNNUniqueResultSet<DistanceType>::worst_distance_;
/** The maximum number of neighbors to consider */
unsigned int capacity_;
/** The maximum distance of a neighbor */
DistanceType radius_;
};
}
#endif //FLANN_RESULTSET_H
|