This file is indexed.

/usr/include/opencv2/flann/lsh_table.h is in libopencv-flann-dev 2.3.1-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

/***********************************************************************
 * Author: Vincent Rabaud
 *************************************************************************/

#ifndef OPENCV_FLANN_LSH_TABLE_H_
#define OPENCV_FLANN_LSH_TABLE_H_

#include <algorithm>
#include <iostream>
#include <iomanip>
#include <limits.h>
// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
#if USE_UNORDERED_MAP
#include <unordered_map>
#else
#include <map>
#endif
#include <math.h>
#include <stddef.h>

#include "dynamic_bitset.h"
#include "matrix.h"

namespace cvflann
{

namespace lsh
{

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** What is stored in an LSH bucket
 */
typedef uint32_t FeatureIndex;
/** The id from which we can get a bucket back in an LSH table
 */
typedef unsigned int BucketKey;

/** A bucket in an LSH table
 */
typedef std::vector<FeatureIndex> Bucket;

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** POD for stats about an LSH table
 */
struct LshStats
{
    std::vector<unsigned int> bucket_sizes_;
    size_t n_buckets_;
    size_t bucket_size_mean_;
    size_t bucket_size_median_;
    size_t bucket_size_min_;
    size_t bucket_size_max_;
    size_t bucket_size_std_dev;
    /** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
     */
    std::vector<std::vector<unsigned int> > size_histogram_;
};

/** Overload the << operator for LshStats
 * @param out the streams
 * @param stats the stats to display
 * @return the streams
 */
inline std::ostream& operator <<(std::ostream& out, const LshStats& stats)
{
    size_t w = 20;
    out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : "
    << stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : "
    << std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w)
    << std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w)
    << std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left)
    << stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : "
    << std::setiosflags(std::ios::left) << stats.bucket_size_max_;

    // Display the histogram
    out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : "
    << std::setiosflags(std::ios::left);
    for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end =
             stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ",  ";

    return out;
}


////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Lsh hash table. As its key is a sub-feature, and as usually
 * the size of it is pretty small, we keep it as a continuous memory array.
 * The value is an index in the corpus of features (we keep it as an unsigned
 * int for pure memory reasons, it could be a size_t)
 */
template<typename ElementType>
class LshTable
{
public:
    /** A container of all the feature indices. Optimized for space
     */
#if USE_UNORDERED_MAP
    typedef std::unordered_map<BucketKey, Bucket> BucketsSpace;
#else
    typedef std::map<BucketKey, Bucket> BucketsSpace;
#endif

    /** A container of all the feature indices. Optimized for speed
     */
    typedef std::vector<Bucket> BucketsSpeed;

    /** Default constructor
     */
    LshTable()
    {
    }

    /** Default constructor
     * Create the mask and allocate the memory
     * @param feature_size is the size of the feature (considered as a ElementType[])
     * @param key_size is the number of bits that are turned on in the feature
     */
    LshTable(unsigned int /*feature_size*/, unsigned int /*key_size*/)
    {
        std::cerr << "LSH is not implemented for that type" << std::endl;
        throw;
    }

    /** Add a feature to the table
     * @param value the value to store for that feature
     * @param feature the feature itself
     */
    void add(unsigned int value, const ElementType* feature)
    {
        // Add the value to the corresponding bucket
        BucketKey key = getKey(feature);

        switch (speed_level_) {
        case kArray:
            // That means we get the buckets from an array
            buckets_speed_[key].push_back(value);
            break;
        case kBitsetHash:
            // That means we can check the bitset for the presence of a key
            key_bitset_.set(key);
            buckets_space_[key].push_back(value);
            break;
        case kHash:
        {
            // That means we have to check for the hash table for the presence of a key
            buckets_space_[key].push_back(value);
            break;
        }
        }
    }

    /** Add a set of features to the table
     * @param dataset the values to store
     */
    void add(Matrix<ElementType> dataset)
    {
#if USE_UNORDERED_MAP
        if (!use_speed_) buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2);
#endif
        // Add the features to the table
        for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]);
        // Now that the table is full, optimize it for speed/space
        optimize();
    }

    /** Get a bucket given the key
     * @param key
     * @return
     */
    inline const Bucket* getBucketFromKey(BucketKey key) const
    {
        // Generate other buckets
        switch (speed_level_) {
        case kArray:
            // That means we get the buckets from an array
            return &buckets_speed_[key];
            break;
        case kBitsetHash:
            // That means we can check the bitset for the presence of a key
            if (key_bitset_.test(key)) return &buckets_space_.find(key)->second;
            else return 0;
            break;
        case kHash:
        {
            // That means we have to check for the hash table for the presence of a key
            BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end();
            bucket_it = buckets_space_.find(key);
            // Stop here if that bucket does not exist
            if (bucket_it == bucket_end) return 0;
            else return &bucket_it->second;
            break;
        }
        }
        return 0;
    }

    /** Compute the sub-signature of a feature
     */
    size_t getKey(const ElementType* /*feature*/) const
    {
        std::cerr << "LSH is not implemented for that type" << std::endl;
        throw;
        return 1;
    }

    /** Get statistics about the table
     * @return
     */
    LshStats getStats() const;

private:
    /** defines the speed fo the implementation
     * kArray uses a vector for storing data
     * kBitsetHash uses a hash map but checks for the validity of a key with a bitset
     * kHash uses a hash map only
     */
    enum SpeedLevel
    {
        kArray, kBitsetHash, kHash
    };

    /** Initialize some variables
     */
    void initialize(size_t key_size)
    {
        speed_level_ = kHash;
        key_size_ = key_size;
    }

    /** Optimize the table for speed/space
     */
    void optimize()
    {
        // If we are already using the fast storage, no need to do anything
        if (speed_level_ == kArray) return;

        // Use an array if it will be more than half full
        if (buckets_space_.size() > (unsigned int)((1 << key_size_) / 2)) {
            speed_level_ = kArray;
            // Fill the array version of it
            buckets_speed_.resize(1 << key_size_);
            for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second;

            // Empty the hash table
            buckets_space_.clear();
            return;
        }

        // If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
        // for the vector) or less than 512MB (key_size_ <= 30)
        if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10
             >= size_t(1 << key_size_)) || (key_size_ <= 32)) {
            speed_level_ = kBitsetHash;
            key_bitset_.resize(1 << key_size_);
            key_bitset_.reset();
            // Try with the BucketsSpace
            for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first);
        }
        else {
            speed_level_ = kHash;
            key_bitset_.clear();
        }
    }

    /** The vector of all the buckets if they are held for speed
     */
    BucketsSpeed buckets_speed_;

    /** The hash table of all the buckets in case we cannot use the speed version
     */
    BucketsSpace buckets_space_;

    /** What is used to store the data */
    SpeedLevel speed_level_;

    /** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
     * That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset)
     */
    DynamicBitset key_bitset_;

    /** The size of the sub-signature in bits
     */
    unsigned int key_size_;

    // Members only used for the unsigned char specialization
    /** The mask to apply to a feature to get the hash key
     * Only used in the unsigned char case
     */
    std::vector<size_t> mask_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Specialization for unsigned char

template<>
inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
{
    initialize(subsignature_size);
    // Allocate the mask
    mask_ = std::vector<size_t>((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0);

    // A bit brutal but fast to code
    std::vector<size_t> indices(feature_size * CHAR_BIT);
    for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i;
    std::random_shuffle(indices.begin(), indices.end());

    // Generate a random set of order of subsignature_size_ bits
    for (unsigned int i = 0; i < key_size_; ++i) {
        size_t index = indices[i];

        // Set that bit in the mask
        size_t divisor = CHAR_BIT * sizeof(size_t);
        size_t idx = index / divisor; //pick the right size_t index
        mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset
    }

    // Set to 1 if you want to display the mask for debug
#if 0
    {
        size_t bcount = 0;
        BOOST_FOREACH(size_t mask_block, mask_){
            out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block
                << std::endl;
            bcount += __builtin_popcountll(mask_block);
        }
        out << "bit count : " << std::dec << bcount << std::endl;
        out << "mask size : " << mask_.size() << std::endl;
        return out;
    }
#endif
}

/** Return the Subsignature of a feature
 * @param feature the feature to analyze
 */
template<>
inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const
{
    // no need to check if T is dividable by sizeof(size_t) like in the Hamming
    // distance computation as we have a mask
    const size_t* feature_block_ptr = reinterpret_cast<const size_t*> (feature);

    // Figure out the subsignature of the feature
    // Given the feature ABCDEF, and the mask 001011, the output will be
    // 000CEF
    size_t subsignature = 0;
    size_t bit_index = 1;

    for (std::vector<size_t>::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) {
        // get the mask and signature blocks
        size_t feature_block = *feature_block_ptr;
        size_t mask_block = *pmask_block;
        while (mask_block) {
            // Get the lowest set bit in the mask block
            size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block);
            // Add it to the current subsignature if necessary
            subsignature += (feature_block & lowest_bit) ? bit_index : 0;
            // Reset the bit in the mask block
            mask_block ^= lowest_bit;
            // increment the bit index for the subsignature
            bit_index <<= 1;
        }
        // Check the next feature block
        ++feature_block_ptr;
    }
    return subsignature;
}

template<>
inline LshStats LshTable<unsigned char>::getStats() const
{
    LshStats stats;
    stats.bucket_size_mean_ = 0;
    if ((buckets_speed_.empty()) && (buckets_space_.empty())) {
        stats.n_buckets_ = 0;
        stats.bucket_size_median_ = 0;
        stats.bucket_size_min_ = 0;
        stats.bucket_size_max_ = 0;
        return stats;
    }

    if (!buckets_speed_.empty()) {
        for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) {
            stats.bucket_sizes_.push_back(pbucket->size());
            stats.bucket_size_mean_ += pbucket->size();
        }
        stats.bucket_size_mean_ /= buckets_speed_.size();
        stats.n_buckets_ = buckets_speed_.size();
    }
    else {
        for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) {
            stats.bucket_sizes_.push_back(x->second.size());
            stats.bucket_size_mean_ += x->second.size();
        }
        stats.bucket_size_mean_ /= buckets_space_.size();
        stats.n_buckets_ = buckets_space_.size();
    }

    std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end());

    //  BOOST_FOREACH(int size, stats.bucket_sizes_)
    //          std::cout << size << " ";
    //  std::cout << std::endl;
    stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2];
    stats.bucket_size_min_ = stats.bucket_sizes_.front();
    stats.bucket_size_max_ = stats.bucket_sizes_.back();

    // TODO compute mean and std
    /*float mean, stddev;
       stats.bucket_size_mean_ = mean;
       stats.bucket_size_std_dev = stddev;*/

    // Include a histogram of the buckets
    unsigned int bin_start = 0;
    unsigned int bin_end = 20;
    bool is_new_bin = true;
    for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator
         != end; )
        if (*iterator < bin_end) {
            if (is_new_bin) {
                stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0));
                stats.size_histogram_.back()[0] = bin_start;
                stats.size_histogram_.back()[1] = bin_end - 1;
                is_new_bin = false;
            }
            ++stats.size_histogram_.back()[2];
            ++iterator;
        }
        else {
            bin_start += 20;
            bin_end += 20;
            is_new_bin = true;
        }

    return stats;
}

// End the two namespaces
}
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#endif /* OPENCV_FLANN_LSH_TABLE_H_ */