This file is indexed.

/usr/include/opencv2/flann/kdtree_index.h is in libopencv-flann-dev 2.3.1-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
#define OPENCV_FLANN_KDTREE_INDEX_H_

#include <algorithm>
#include <map>
#include <cassert>
#include <cstring>

#include "general.h"
#include "nn_index.h"
#include "dynamic_bitset.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"


namespace cvflann
{

struct KDTreeIndexParams : public IndexParams
{
    KDTreeIndexParams(int trees = 4)
    {
        (*this)["algorithm"] = FLANN_INDEX_KDTREE;
        (*this)["trees"] = trees;
    }
};


/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template <typename Distance>
class KDTreeIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;


    /**
     * KDTree constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the kdtree algorithm
     */
    KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
                Distance d = Distance() ) :
        dataset_(inputData), index_params_(params), distance_(d)
    {
        size_ = dataset_.rows;
        veclen_ = dataset_.cols;

        trees_ = get_param(index_params_,"trees",4);
        tree_roots_ = new NodePtr[trees_];

        // Create a permutable array of indices to the input vectors.
        vind_.resize(size_);
        for (size_t i = 0; i < size_; ++i) {
            vind_[i] = int(i);
        }

        mean_ = new DistanceType[veclen_];
        var_ = new DistanceType[veclen_];
    }


    KDTreeIndex(const KDTreeIndex&);
    KDTreeIndex& operator=(const KDTreeIndex&);

    /**
     * Standard destructor
     */
    ~KDTreeIndex()
    {
        if (tree_roots_!=NULL) {
            delete[] tree_roots_;
        }
        delete[] mean_;
        delete[] var_;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        /* Construct the randomized trees. */
        for (int i = 0; i < trees_; i++) {
            /* Randomize the order of vectors to allow for unbiased sampling. */
            std::random_shuffle(vind_.begin(), vind_.end());
            tree_roots_[i] = divideTree(&vind_[0], int(size_) );
        }
    }


    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KDTREE;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, trees_);
        for (int i=0; i<trees_; ++i) {
            save_tree(stream, tree_roots_[i]);
        }
    }



    void loadIndex(FILE* stream)
    {
        load_value(stream, trees_);
        if (tree_roots_!=NULL) {
            delete[] tree_roots_;
        }
        tree_roots_ = new NodePtr[trees_];
        for (int i=0; i<trees_; ++i) {
            load_tree(stream,tree_roots_[i]);
        }

        index_params_["algorithm"] = getType();
        index_params_["trees"] = tree_roots_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return veclen_;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
    }

    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        int maxChecks = get_param(searchParams,"checks", 32);
        float epsError = 1+get_param(searchParams,"eps",0.0f);

        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
            getExactNeighbors(result, vec, epsError);
        }
        else {
            getNeighbors(result, vec, maxChecks, epsError);
        }
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }

private:


    /*--------------------- Internal Data Structures --------------------------*/
    struct Node
    {
        /**
         * Dimension used for subdivision.
         */
        int divfeat;
        /**
         * The values used for subdivision.
         */
        DistanceType divval;
        /**
         * The child nodes.
         */
        Node* child1, * child2;
    };
    typedef Node* NodePtr;
    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
    typedef BranchSt* Branch;



    void save_tree(FILE* stream, NodePtr tree)
    {
        save_value(stream, *tree);
        if (tree->child1!=NULL) {
            save_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            save_tree(stream, tree->child2);
        }
    }


    void load_tree(FILE* stream, NodePtr& tree)
    {
        tree = pool_.allocate<Node>();
        load_value(stream, *tree);
        if (tree->child1!=NULL) {
            load_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            load_tree(stream, tree->child2);
        }
    }


    /**
     * Create a tree node that subdivides the list of vecs from vind[first]
     * to vind[last].  The routine is called recursively on each sublist.
     * Place a pointer to this new tree node in the location pTree.
     *
     * Params: pTree = the new node to create
     *                  first = index of the first vector
     *                  last = index of the last vector
     */
    NodePtr divideTree(int* ind, int count)
    {
        NodePtr node = pool_.allocate<Node>(); // allocate memory

        /* If too few exemplars remain, then make this a leaf node. */
        if ( count == 1) {
            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
            node->divfeat = *ind;    /* Store index of this vec. */
        }
        else {
            int idx;
            int cutfeat;
            DistanceType cutval;
            meanSplit(ind, count, idx, cutfeat, cutval);

            node->divfeat = cutfeat;
            node->divval = cutval;
            node->child1 = divideTree(ind, idx);
            node->child2 = divideTree(ind+idx, count-idx);
        }

        return node;
    }


    /**
     * Choose which feature to use in order to subdivide this set of vectors.
     * Make a random choice among those with the highest variance, and use
     * its variance as the threshold value.
     */
    void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
    {
        memset(mean_,0,veclen_*sizeof(DistanceType));
        memset(var_,0,veclen_*sizeof(DistanceType));

        /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
            sampled to get a good estimate.
         */
        int cnt = std::min((int)SAMPLE_MEAN+1, count);
        for (int j = 0; j < cnt; ++j) {
            ElementType* v = dataset_[ind[j]];
            for (size_t k=0; k<veclen_; ++k) {
                mean_[k] += v[k];
            }
        }
        for (size_t k=0; k<veclen_; ++k) {
            mean_[k] /= cnt;
        }

        /* Compute variances (no need to divide by count). */
        for (int j = 0; j < cnt; ++j) {
            ElementType* v = dataset_[ind[j]];
            for (size_t k=0; k<veclen_; ++k) {
                DistanceType dist = v[k] - mean_[k];
                var_[k] += dist * dist;
            }
        }
        /* Select one of the highest variance indices at random. */
        cutfeat = selectDivision(var_);
        cutval = mean_[cutfeat];

        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;

        /* If either list is empty, it means that all remaining features
         * are identical. Split in the middle to maintain a balanced tree.
         */
        if ((lim1==count)||(lim2==0)) index = count/2;
    }


    /**
     * Select the top RAND_DIM largest values from v and return the index of
     * one of these selected at random.
     */
    int selectDivision(DistanceType* v)
    {
        int num = 0;
        size_t topind[RAND_DIM];

        /* Create a list of the indices of the top RAND_DIM values. */
        for (size_t i = 0; i < veclen_; ++i) {
            if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
                /* Put this element at end of topind. */
                if (num < RAND_DIM) {
                    topind[num++] = i;            /* Add to list. */
                }
                else {
                    topind[num-1] = i;         /* Replace last element. */
                }
                /* Bubble end value down to right location by repeated swapping. */
                int j = num - 1;
                while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
                    std::swap(topind[j], topind[j-1]);
                    --j;
                }
            }
        }
        /* Select a random integer in range [0,num-1], and return that index. */
        int rnd = rand_int(num);
        return (int)topind[rnd];
    }


    /**
     *  Subdivide the list of points by a plane perpendicular on axe corresponding
     *  to the 'cutfeat' dimension at 'cutval' position.
     *
     *  On return:
     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
     *  dataset[ind[lim2..count]][cutfeat]>cutval
     */
    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
    {
        /* Move vector indices for left subtree to front of list. */
        int left = 0;
        int right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim1 = left;
        right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim2 = left;
    }

    /**
     * Performs an exact nearest neighbor search. The exact search performs a full
     * traversal of the tree.
     */
    void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
    {
        //		checkID -= 1;  /* Set a different unique ID for each search. */

        if (trees_ > 1) {
            fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
        }
        if (trees_>0) {
            searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
        }
        assert(result.full());
    }

    /**
     * Performs the approximate nearest-neighbor search. The search is approximate
     * because the tree traversal is abandoned after a given number of descends in
     * the tree.
     */
    void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
    {
        int i;
        BranchSt branch;

        int checkCount = 0;
        Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
        DynamicBitset checked(size_);

        /* Search once through each tree down to root. */
        for (i = 0; i < trees_; ++i) {
            searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
        }

        /* Keep searching other branches from heap until finished. */
        while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
            searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
        }

        delete heap;

        assert(result.full());
    }


    /**
     *  Search starting from a given node of the tree.  Based on any mismatches at
     *  higher levels, all exemplars below this level must have a distance of
     *  at least "mindistsq".
     */
    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
                     float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
    {
        if (result_set.worstDist()<mindist) {
            //			printf("Ignoring branch, too far\n");
            return;
        }

        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            /*  Do not check same node more than once when searching multiple trees.
                Once a vector is checked, we set its location in vind to the
                current checkID.
             */
            int index = node->divfeat;
            if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
            checked.set(index);
            checkCount++;

            DistanceType dist = distance_(dataset_[index], vec, veclen_);
            result_set.addPoint(dist,index);

            return;
        }

        /* Which child branch should be taken first? */
        ElementType val = vec[node->divfeat];
        DistanceType diff = val - node->divval;
        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;

        /* Create a branch record for the branch not taken.  Add distance
            of this feature boundary (we don't attempt to correct for any
            use of this feature in a parent node, which is unlikely to
            happen and would have only a small effect).  Don't bother
            adding more branches to heap after halfway point, as cost of
            adding exceeds their value.
         */

        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
        //		if (2 * checkCount < maxCheck  ||  !result.full()) {
        if ((new_distsq*epsError < result_set.worstDist())||  !result_set.full()) {
            heap->insert( BranchSt(otherChild, new_distsq) );
        }

        /* Call recursively to search next level down. */
        searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
    }

    /**
     * Performs an exact search in the tree starting from a node.
     */
    void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
    {
        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            int index = node->divfeat;
            DistanceType dist = distance_(dataset_[index], vec, veclen_);
            result_set.addPoint(dist,index);
            return;
        }

        /* Which child branch should be taken first? */
        ElementType val = vec[node->divfeat];
        DistanceType diff = val - node->divval;
        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;

        /* Create a branch record for the branch not taken.  Add distance
            of this feature boundary (we don't attempt to correct for any
            use of this feature in a parent node, which is unlikely to
            happen and would have only a small effect).  Don't bother
            adding more branches to heap after halfway point, as cost of
            adding exceeds their value.
         */

        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);

        /* Call recursively to search next level down. */
        searchLevelExact(result_set, vec, bestChild, mindist, epsError);

        if (new_distsq*epsError<=result_set.worstDist()) {
            searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
        }
    }


private:

    enum
    {
        /**
         * To improve efficiency, only SAMPLE_MEAN random values are used to
         * compute the mean and variance at each level when building a tree.
         * A value of 100 seems to perform as well as using all values.
         */
        SAMPLE_MEAN = 100,
        /**
         * Top random dimensions to consider
         *
         * When creating random trees, the dimension on which to subdivide is
         * selected at random from among the top RAND_DIM dimensions with the
         * highest variance.  A value of 5 works well.
         */
        RAND_DIM=5
    };


    /**
     * Number of randomized trees that are used
     */
    int trees_;

    /**
     *  Array of indices to vectors in the dataset.
     */
    std::vector<int> vind_;

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    IndexParams index_params_;

    size_t size_;
    size_t veclen_;


    DistanceType* mean_;
    DistanceType* var_;


    /**
     * Array of k-d trees used to find neighbours.
     */
    NodePtr* tree_roots_;

    /**
     * Pooled memory allocator.
     *
     * Using a pooled memory allocator is more efficient
     * than allocating memory directly when there is a large
     * number small of memory allocations.
     */
    PooledAllocator pool_;

    Distance distance_;


};   // class KDTreeForest

}

#endif //OPENCV_FLANN_KDTREE_INDEX_H_