/usr/include/opencv2/features2d/features2d.hpp is in libopencv-features2d-dev 2.3.1-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 | /*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_FEATURES_2D_HPP__
#define __OPENCV_FEATURES_2D_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/flann/miniflann.hpp"
#ifdef __cplusplus
#include <limits>
extern "C" {
#endif
typedef struct CvSURFPoint
{
CvPoint2D32f pt;
int laplacian;
int size;
float dir;
float hessian;
} CvSURFPoint;
CV_INLINE CvSURFPoint cvSURFPoint( CvPoint2D32f pt, int laplacian,
int size, float dir CV_DEFAULT(0),
float hessian CV_DEFAULT(0))
{
CvSURFPoint kp;
kp.pt = pt;
kp.laplacian = laplacian;
kp.size = size;
kp.dir = dir;
kp.hessian = hessian;
return kp;
}
typedef struct CvSURFParams
{
int extended;
int upright;
double hessianThreshold;
int nOctaves;
int nOctaveLayers;
} CvSURFParams;
CVAPI(CvSURFParams) cvSURFParams( double hessianThreshold, int extended CV_DEFAULT(0) );
// If useProvidedKeyPts!=0, keypoints are not detected, but descriptors are computed
// at the locations provided in keypoints (a CvSeq of CvSURFPoint).
CVAPI(void) cvExtractSURF( const CvArr* img, const CvArr* mask,
CvSeq** keypoints, CvSeq** descriptors,
CvMemStorage* storage, CvSURFParams params, int useProvidedKeyPts CV_DEFAULT(0) );
/*!
Maximal Stable Regions Parameters
*/
typedef struct CvMSERParams
{
//! delta, in the code, it compares (size_{i}-size_{i-delta})/size_{i-delta}
int delta;
//! prune the area which bigger than maxArea
int maxArea;
//! prune the area which smaller than minArea
int minArea;
//! prune the area have simliar size to its children
float maxVariation;
//! trace back to cut off mser with diversity < min_diversity
float minDiversity;
/////// the next few params for MSER of color image
//! for color image, the evolution steps
int maxEvolution;
//! the area threshold to cause re-initialize
double areaThreshold;
//! ignore too small margin
double minMargin;
//! the aperture size for edge blur
int edgeBlurSize;
} CvMSERParams;
CVAPI(CvMSERParams) cvMSERParams( int delta CV_DEFAULT(5), int min_area CV_DEFAULT(60),
int max_area CV_DEFAULT(14400), float max_variation CV_DEFAULT(.25f),
float min_diversity CV_DEFAULT(.2f), int max_evolution CV_DEFAULT(200),
double area_threshold CV_DEFAULT(1.01),
double min_margin CV_DEFAULT(.003),
int edge_blur_size CV_DEFAULT(5) );
// Extracts the contours of Maximally Stable Extremal Regions
CVAPI(void) cvExtractMSER( CvArr* _img, CvArr* _mask, CvSeq** contours, CvMemStorage* storage, CvMSERParams params );
typedef struct CvStarKeypoint
{
CvPoint pt;
int size;
float response;
} CvStarKeypoint;
CV_INLINE CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response)
{
CvStarKeypoint kpt;
kpt.pt = pt;
kpt.size = size;
kpt.response = response;
return kpt;
}
typedef struct CvStarDetectorParams
{
int maxSize;
int responseThreshold;
int lineThresholdProjected;
int lineThresholdBinarized;
int suppressNonmaxSize;
} CvStarDetectorParams;
CV_INLINE CvStarDetectorParams cvStarDetectorParams(
int maxSize CV_DEFAULT(45),
int responseThreshold CV_DEFAULT(30),
int lineThresholdProjected CV_DEFAULT(10),
int lineThresholdBinarized CV_DEFAULT(8),
int suppressNonmaxSize CV_DEFAULT(5))
{
CvStarDetectorParams params;
params.maxSize = maxSize;
params.responseThreshold = responseThreshold;
params.lineThresholdProjected = lineThresholdProjected;
params.lineThresholdBinarized = lineThresholdBinarized;
params.suppressNonmaxSize = suppressNonmaxSize;
return params;
}
CVAPI(CvSeq*) cvGetStarKeypoints( const CvArr* img, CvMemStorage* storage,
CvStarDetectorParams params CV_DEFAULT(cvStarDetectorParams()));
#ifdef __cplusplus
}
namespace cv
{
struct CV_EXPORTS DefaultRngAuto
{
const uint64 old_state;
DefaultRngAuto() : old_state(theRNG().state) { theRNG().state = (uint64)-1; }
~DefaultRngAuto() { theRNG().state = old_state; }
DefaultRngAuto& operator=(const DefaultRngAuto&);
};
// CvAffinePose: defines a parameterized affine transformation of an image patch.
// An image patch is rotated on angle phi (in degrees), then scaled lambda1 times
// along horizontal and lambda2 times along vertical direction, and then rotated again
// on angle (theta - phi).
class CV_EXPORTS CvAffinePose
{
public:
float phi;
float theta;
float lambda1;
float lambda2;
};
/*!
The Keypoint Class
The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as
Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc.
The keypoint is characterized by the 2D position, scale
(proportional to the diameter of the neighborhood that needs to be taken into account),
orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor
(usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
cv::KDTree or another method.
*/
class CV_EXPORTS_W_SIMPLE KeyPoint
{
public:
//! the default constructor
CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
//! the full constructor
KeyPoint(Point2f _pt, float _size, float _angle=-1,
float _response=0, int _octave=0, int _class_id=-1)
: pt(_pt), size(_size), angle(_angle),
response(_response), octave(_octave), class_id(_class_id) {}
//! another form of the full constructor
CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
float _response=0, int _octave=0, int _class_id=-1)
: pt(x, y), size(_size), angle(_angle),
response(_response), octave(_octave), class_id(_class_id) {}
size_t hash() const;
//! converts vector of keypoints to vector of points
static void convert(const std::vector<KeyPoint>& keypoints,
CV_OUT std::vector<Point2f>& points2f,
const std::vector<int>& keypointIndexes=std::vector<int>());
//! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
static void convert(const std::vector<Point2f>& points2f,
CV_OUT std::vector<KeyPoint>& keypoints,
float size=1, float response=1, int octave=0, int class_id=-1);
//! computes overlap for pair of keypoints;
//! overlap is a ratio between area of keypoint regions intersection and
//! area of keypoint regions union (now keypoint region is circle)
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable)
CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
};
//! writes vector of keypoints to the file storage
CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
//! reads vector of keypoints from the specified file storage node
CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
/*
* A class filters a vector of keypoints.
* Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
* it has only 4 needed by now static methods.
*/
class CV_EXPORTS KeyPointsFilter
{
public:
KeyPointsFilter(){}
/*
* Remove keypoints within borderPixels of an image edge.
*/
static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
/*
* Remove keypoints of sizes out of range.
*/
static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize, float maxSize=std::numeric_limits<float>::max() );
/*
* Remove keypoints from some image by mask for pixels of this image.
*/
static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask );
/*
* Remove duplicated keypoints.
*/
static void removeDuplicated( vector<KeyPoint>& keypoints );
};
/*!
SIFT implementation.
The class implements SIFT algorithm by D. Lowe.
*/
class CV_EXPORTS SIFT
{
public:
struct CV_EXPORTS CommonParams
{
static const int DEFAULT_NOCTAVES = 4;
static const int DEFAULT_NOCTAVE_LAYERS = 3;
static const int DEFAULT_FIRST_OCTAVE = -1;
enum { FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 };
CommonParams();
CommonParams( int _nOctaves, int _nOctaveLayers, int /*_firstOctave*/, int /*_angleMode*/ );
CommonParams( int _nOctaves, int _nOctaveLayers );
int nOctaves, nOctaveLayers;
int firstOctave; // it is not used now (firstOctave == 0 always)
int angleMode; // it is not used now
};
struct CV_EXPORTS DetectorParams
{
static double GET_DEFAULT_THRESHOLD() { return 0.04; }
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; }
DetectorParams();
DetectorParams( double _threshold, double _edgeThreshold );
double threshold, edgeThreshold;
};
struct CV_EXPORTS DescriptorParams
{
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; }
static const bool DEFAULT_IS_NORMALIZE = true;
static const int DESCRIPTOR_SIZE = 128;
DescriptorParams();
DescriptorParams( double _magnification, bool /*_isNormalize*/, bool _recalculateAngles );
DescriptorParams( bool _recalculateAngles );
double magnification;
bool isNormalize; // it is not used now (true always)
bool recalculateAngles;
};
SIFT();
//! sift-detector constructor
SIFT( double _threshold, double _edgeThreshold,
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
int _angleMode=CommonParams::FIRST_ANGLE );
//! sift-descriptor constructor
SIFT( double _magnification, bool _isNormalize=true,
bool _recalculateAngles = true,
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
int _angleMode=CommonParams::FIRST_ANGLE );
SIFT( const CommonParams& _commParams,
const DetectorParams& _detectorParams = DetectorParams(),
const DescriptorParams& _descriptorParams = DescriptorParams() );
//! returns the descriptor size in floats (128)
int descriptorSize() const;
//! finds the keypoints using SIFT algorithm
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints) const;
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
//! Optionally it can compute descriptors for the user-provided keypoints
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints,
Mat& descriptors,
bool useProvidedKeypoints=false) const;
CommonParams getCommonParams () const;
DetectorParams getDetectorParams () const;
DescriptorParams getDescriptorParams () const;
protected:
CommonParams commParams;
DetectorParams detectorParams;
DescriptorParams descriptorParams;
};
/*!
SURF implementation.
The class implements SURF algorithm by H. Bay et al.
*/
class CV_EXPORTS_W SURF : public CvSURFParams
{
public:
//! the default constructor
CV_WRAP SURF();
//! the full constructor taking all the necessary parameters
CV_WRAP SURF(double _hessianThreshold, int _nOctaves=4,
int _nOctaveLayers=2, bool _extended=false, bool _upright=false);
//! returns the descriptor size in float's (64 or 128)
CV_WRAP int descriptorSize() const;
//! finds the keypoints using fast hessian detector used in SURF
CV_WRAP_AS(detect) void operator()(const Mat& img, const Mat& mask,
CV_OUT vector<KeyPoint>& keypoints) const;
//! finds the keypoints and computes their descriptors. Optionally it can compute descriptors for the user-provided keypoints
CV_WRAP_AS(detect) void operator()(const Mat& img, const Mat& mask,
CV_OUT vector<KeyPoint>& keypoints,
CV_OUT vector<float>& descriptors,
bool useProvidedKeypoints=false) const;
};
/*!
ORB implementation.
*/
class CV_EXPORTS ORB
{
public:
/** the size of the signature in bytes */
enum { kBytes = 32 };
struct CV_EXPORTS CommonParams
{
enum { DEFAULT_N_LEVELS = 3, DEFAULT_FIRST_LEVEL = 0};
/** default constructor */
CommonParams(float scale_factor = 1.2f, unsigned int n_levels = DEFAULT_N_LEVELS, int edge_threshold = 31,
unsigned int first_level = DEFAULT_FIRST_LEVEL) :
scale_factor_(scale_factor), n_levels_(n_levels), first_level_(first_level >= n_levels ? 0 : first_level),
edge_threshold_(edge_threshold)
{
// No other patch size is supported right now
patch_size_ = 31;
}
void read(const FileNode& fn);
void write(FileStorage& fs) const;
/** Coefficient by which we divide the dimensions from one scale pyramid level to the next */
float scale_factor_;
/** The number of levels in the scale pyramid */
unsigned int n_levels_;
/** The level at which the image is given
* if 1, that means we will also look at the image scale_factor_ times bigger
*/
unsigned int first_level_;
/** How far from the boundary the points should be */
int edge_threshold_;
friend class ORB;
protected:
/** The size of the patch that will be used for orientation and comparisons */
int patch_size_;
};
/** Constructor
* @param n_features the number of desired features
* @param detector_params parameters to use
*/
ORB(size_t n_features = 500, const CommonParams & detector_params = CommonParams());
/** destructor to empty the patterns */
~ORB();
/** returns the descriptor size in bytes */
int descriptorSize() const;
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
*/
void
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints);
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param useProvidedKeypoints if true, the keypoints are used as an input
*/
void
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, cv::Mat & descriptors,
bool useProvidedKeypoints = false);
private:
/** The size of the patch used when comparing regions in the patterns */
static const int kKernelWidth = 5;
/** Compute the ORB features and descriptors on an image
* @param image the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
* @param do_descriptors if true, also computes the descriptors
*/
void
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, cv::Mat & descriptors,
bool do_keypoints, bool do_descriptors);
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
void computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid,
std::vector<std::vector<cv::KeyPoint> >& keypoints) const;
/** Compute the ORB keypoint orientations
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the resulting keypoints
*/
void
computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
std::vector<cv::KeyPoint>& keypoints) const;
/** Compute the ORB descriptors
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
void
computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const;
/** Compute the integral image and upadte the cached values
* @param image the image to compute the features and descriptors on
* @param level the scale at which we compute the orientation
* @param descriptors the resulting descriptors
*/
void computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image);
/** Parameters tuning ORB */
CommonParams params_;
/** size of the half patch used for orientation computation, see Rosin - 1999 - Measuring Corner Properties */
int half_patch_size_;
/** pre-computed offsets used for the Harris verification, one vector per scale */
std::vector<std::vector<int> > orientation_horizontal_offsets_;
std::vector<std::vector<int> > orientation_vertical_offsets_;
/** The steps of the integral images for each scale */
std::vector<size_t> integral_image_steps_;
/** The number of desired features per scale */
std::vector<size_t> n_features_per_level_;
/** The overall number of desired features */
size_t n_features_;
/** the end of a row in a circular patch */
std::vector<int> u_max_;
/** The patterns for each level (the patterns are the same, but not their offset */
class OrbPatterns;
std::vector<OrbPatterns*> patterns_;
};
/*!
Maximal Stable Extremal Regions class.
The class implements MSER algorithm introduced by J. Matas.
Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
not the salient point detector.
It returns the regions, each of those is encoded as a contour.
*/
class CV_EXPORTS_W MSER : public CvMSERParams
{
public:
//! the default constructor
CV_WRAP MSER();
//! the full constructor
CV_WRAP MSER( int _delta, int _min_area, int _max_area,
double _max_variation, double _min_diversity,
int _max_evolution, double _area_threshold,
double _min_margin, int _edge_blur_size );
//! the operator that extracts the MSERs from the image or the specific part of it
CV_WRAP_AS(detect) void operator()( const Mat& image,
CV_OUT vector<vector<Point> >& msers, const Mat& mask ) const;
};
/*!
The "Star" Detector.
The class implements the keypoint detector introduced by K. Konolige.
*/
class CV_EXPORTS_W StarDetector : public CvStarDetectorParams
{
public:
//! the default constructor
CV_WRAP StarDetector();
//! the full constructor
CV_WRAP StarDetector(int _maxSize, int _responseThreshold,
int _lineThresholdProjected,
int _lineThresholdBinarized,
int _suppressNonmaxSize);
//! finds the keypoints in the image
CV_WRAP_AS(detect) void operator()(const Mat& image,
CV_OUT vector<KeyPoint>& keypoints) const;
};
//! detects corners using FAST algorithm by E. Rosten
CV_EXPORTS void FAST( const Mat& image, CV_OUT vector<KeyPoint>& keypoints,
int threshold, bool nonmaxSupression=true );
/*!
The Patch Generator class
*/
class CV_EXPORTS PatchGenerator
{
public:
PatchGenerator();
PatchGenerator(double _backgroundMin, double _backgroundMax,
double _noiseRange, bool _randomBlur=true,
double _lambdaMin=0.6, double _lambdaMax=1.5,
double _thetaMin=-CV_PI, double _thetaMax=CV_PI,
double _phiMin=-CV_PI, double _phiMax=CV_PI );
void operator()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const;
void operator()(const Mat& image, const Mat& transform, Mat& patch,
Size patchSize, RNG& rng) const;
void warpWholeImage(const Mat& image, Mat& matT, Mat& buf,
CV_OUT Mat& warped, int border, RNG& rng) const;
void generateRandomTransform(Point2f srcCenter, Point2f dstCenter,
CV_OUT Mat& transform, RNG& rng,
bool inverse=false) const;
void setAffineParam(double lambda, double theta, double phi);
double backgroundMin, backgroundMax;
double noiseRange;
bool randomBlur;
double lambdaMin, lambdaMax;
double thetaMin, thetaMax;
double phiMin, phiMax;
};
class CV_EXPORTS LDetector
{
public:
LDetector();
LDetector(int _radius, int _threshold, int _nOctaves,
int _nViews, double _baseFeatureSize, double _clusteringDistance);
void operator()(const Mat& image,
CV_OUT vector<KeyPoint>& keypoints,
int maxCount=0, bool scaleCoords=true) const;
void operator()(const vector<Mat>& pyr,
CV_OUT vector<KeyPoint>& keypoints,
int maxCount=0, bool scaleCoords=true) const;
void getMostStable2D(const Mat& image, CV_OUT vector<KeyPoint>& keypoints,
int maxCount, const PatchGenerator& patchGenerator) const;
void setVerbose(bool verbose);
void read(const FileNode& node);
void write(FileStorage& fs, const String& name=String()) const;
int radius;
int threshold;
int nOctaves;
int nViews;
bool verbose;
double baseFeatureSize;
double clusteringDistance;
};
typedef LDetector YAPE;
class CV_EXPORTS FernClassifier
{
public:
FernClassifier();
FernClassifier(const FileNode& node);
FernClassifier(const vector<vector<Point2f> >& points,
const vector<Mat>& refimgs,
const vector<vector<int> >& labels=vector<vector<int> >(),
int _nclasses=0, int _patchSize=PATCH_SIZE,
int _signatureSize=DEFAULT_SIGNATURE_SIZE,
int _nstructs=DEFAULT_STRUCTS,
int _structSize=DEFAULT_STRUCT_SIZE,
int _nviews=DEFAULT_VIEWS,
int _compressionMethod=COMPRESSION_NONE,
const PatchGenerator& patchGenerator=PatchGenerator());
virtual ~FernClassifier();
virtual void read(const FileNode& n);
virtual void write(FileStorage& fs, const String& name=String()) const;
virtual void trainFromSingleView(const Mat& image,
const vector<KeyPoint>& keypoints,
int _patchSize=PATCH_SIZE,
int _signatureSize=DEFAULT_SIGNATURE_SIZE,
int _nstructs=DEFAULT_STRUCTS,
int _structSize=DEFAULT_STRUCT_SIZE,
int _nviews=DEFAULT_VIEWS,
int _compressionMethod=COMPRESSION_NONE,
const PatchGenerator& patchGenerator=PatchGenerator());
virtual void train(const vector<vector<Point2f> >& points,
const vector<Mat>& refimgs,
const vector<vector<int> >& labels=vector<vector<int> >(),
int _nclasses=0, int _patchSize=PATCH_SIZE,
int _signatureSize=DEFAULT_SIGNATURE_SIZE,
int _nstructs=DEFAULT_STRUCTS,
int _structSize=DEFAULT_STRUCT_SIZE,
int _nviews=DEFAULT_VIEWS,
int _compressionMethod=COMPRESSION_NONE,
const PatchGenerator& patchGenerator=PatchGenerator());
virtual int operator()(const Mat& img, Point2f kpt, vector<float>& signature) const;
virtual int operator()(const Mat& patch, vector<float>& signature) const;
virtual void clear();
virtual bool empty() const;
void setVerbose(bool verbose);
int getClassCount() const;
int getStructCount() const;
int getStructSize() const;
int getSignatureSize() const;
int getCompressionMethod() const;
Size getPatchSize() const;
struct Feature
{
uchar x1, y1, x2, y2;
Feature() : x1(0), y1(0), x2(0), y2(0) {}
Feature(int _x1, int _y1, int _x2, int _y2)
: x1((uchar)_x1), y1((uchar)_y1), x2((uchar)_x2), y2((uchar)_y2)
{}
template<typename _Tp> bool operator ()(const Mat_<_Tp>& patch) const
{ return patch(y1,x1) > patch(y2, x2); }
};
enum
{
PATCH_SIZE = 31,
DEFAULT_STRUCTS = 50,
DEFAULT_STRUCT_SIZE = 9,
DEFAULT_VIEWS = 5000,
DEFAULT_SIGNATURE_SIZE = 176,
COMPRESSION_NONE = 0,
COMPRESSION_RANDOM_PROJ = 1,
COMPRESSION_PCA = 2,
DEFAULT_COMPRESSION_METHOD = COMPRESSION_NONE
};
protected:
virtual void prepare(int _nclasses, int _patchSize, int _signatureSize,
int _nstructs, int _structSize,
int _nviews, int _compressionMethod);
virtual void finalize(RNG& rng);
virtual int getLeaf(int fidx, const Mat& patch) const;
bool verbose;
int nstructs;
int structSize;
int nclasses;
int signatureSize;
int compressionMethod;
int leavesPerStruct;
Size patchSize;
vector<Feature> features;
vector<int> classCounters;
vector<float> posteriors;
};
/****************************************************************************************\
* Calonder Classifier *
\****************************************************************************************/
struct RTreeNode;
struct CV_EXPORTS BaseKeypoint
{
int x;
int y;
IplImage* image;
BaseKeypoint()
: x(0), y(0), image(NULL)
{}
BaseKeypoint(int x, int y, IplImage* image)
: x(x), y(y), image(image)
{}
};
class CV_EXPORTS RandomizedTree
{
public:
friend class RTreeClassifier;
static const uchar PATCH_SIZE = 32;
static const int DEFAULT_DEPTH = 9;
static const int DEFAULT_VIEWS = 5000;
static const size_t DEFAULT_REDUCED_NUM_DIM = 176;
static float GET_LOWER_QUANT_PERC() { return .03f; }
static float GET_UPPER_QUANT_PERC() { return .92f; }
RandomizedTree();
~RandomizedTree();
void train(std::vector<BaseKeypoint> const& base_set, RNG &rng,
int depth, int views, size_t reduced_num_dim, int num_quant_bits);
void train(std::vector<BaseKeypoint> const& base_set, RNG &rng,
PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim,
int num_quant_bits);
// following two funcs are EXPERIMENTAL (do not use unless you know exactly what you do)
static void quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode=0);
static void quantizeVector(float *src, int dim, int N, float bnds[2], uchar *dst);
// patch_data must be a 32x32 array (no row padding)
float* getPosterior(uchar* patch_data);
const float* getPosterior(uchar* patch_data) const;
uchar* getPosterior2(uchar* patch_data);
const uchar* getPosterior2(uchar* patch_data) const;
void read(const char* file_name, int num_quant_bits);
void read(std::istream &is, int num_quant_bits);
void write(const char* file_name) const;
void write(std::ostream &os) const;
int classes() { return classes_; }
int depth() { return depth_; }
//void setKeepFloatPosteriors(bool b) { keep_float_posteriors_ = b; }
void discardFloatPosteriors() { freePosteriors(1); }
inline void applyQuantization(int num_quant_bits) { makePosteriors2(num_quant_bits); }
// debug
void savePosteriors(std::string url, bool append=false);
void savePosteriors2(std::string url, bool append=false);
private:
int classes_;
int depth_;
int num_leaves_;
std::vector<RTreeNode> nodes_;
float **posteriors_; // 16-bytes aligned posteriors
uchar **posteriors2_; // 16-bytes aligned posteriors
std::vector<int> leaf_counts_;
void createNodes(int num_nodes, RNG &rng);
void allocPosteriorsAligned(int num_leaves, int num_classes);
void freePosteriors(int which); // which: 1=posteriors_, 2=posteriors2_, 3=both
void init(int classes, int depth, RNG &rng);
void addExample(int class_id, uchar* patch_data);
void finalize(size_t reduced_num_dim, int num_quant_bits);
int getIndex(uchar* patch_data) const;
inline float* getPosteriorByIndex(int index);
inline const float* getPosteriorByIndex(int index) const;
inline uchar* getPosteriorByIndex2(int index);
inline const uchar* getPosteriorByIndex2(int index) const;
//void makeRandomMeasMatrix(float *cs_phi, PHI_DISTR_TYPE dt, size_t reduced_num_dim);
void convertPosteriorsToChar();
void makePosteriors2(int num_quant_bits);
void compressLeaves(size_t reduced_num_dim);
void estimateQuantPercForPosteriors(float perc[2]);
};
inline uchar* getData(IplImage* image)
{
return reinterpret_cast<uchar*>(image->imageData);
}
inline float* RandomizedTree::getPosteriorByIndex(int index)
{
return const_cast<float*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex(index));
}
inline const float* RandomizedTree::getPosteriorByIndex(int index) const
{
return posteriors_[index];
}
inline uchar* RandomizedTree::getPosteriorByIndex2(int index)
{
return const_cast<uchar*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex2(index));
}
inline const uchar* RandomizedTree::getPosteriorByIndex2(int index) const
{
return posteriors2_[index];
}
struct CV_EXPORTS RTreeNode
{
short offset1, offset2;
RTreeNode() {}
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
: offset1(y1*RandomizedTree::PATCH_SIZE + x1),
offset2(y2*RandomizedTree::PATCH_SIZE + x2)
{}
//! Left child on 0, right child on 1
inline bool operator() (uchar* patch_data) const
{
return patch_data[offset1] > patch_data[offset2];
}
};
class CV_EXPORTS RTreeClassifier
{
public:
static const int DEFAULT_TREES = 48;
static const size_t DEFAULT_NUM_QUANT_BITS = 4;
RTreeClassifier();
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = RandomizedTree::DEFAULT_DEPTH,
int views = RandomizedTree::DEFAULT_VIEWS,
size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS);
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
PatchGenerator &make_patch,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = RandomizedTree::DEFAULT_DEPTH,
int views = RandomizedTree::DEFAULT_VIEWS,
size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS);
// sig must point to a memory block of at least classes()*sizeof(float|uchar) bytes
void getSignature(IplImage *patch, uchar *sig) const;
void getSignature(IplImage *patch, float *sig) const;
void getSparseSignature(IplImage *patch, float *sig, float thresh) const;
// TODO: deprecated in favor of getSignature overload, remove
void getFloatSignature(IplImage *patch, float *sig) const { getSignature(patch, sig); }
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, int sig_len=176);
static inline uchar* safeSignatureAlloc(int num_sig=1, int sig_len=176);
inline int classes() const { return classes_; }
inline int original_num_classes() const { return original_num_classes_; }
void setQuantization(int num_quant_bits);
void discardFloatPosteriors();
void read(const char* file_name);
void read(std::istream &is);
void write(const char* file_name) const;
void write(std::ostream &os) const;
// experimental and debug
void saveAllFloatPosteriors(std::string file_url);
void saveAllBytePosteriors(std::string file_url);
void setFloatPosteriorsFromTextfile_176(std::string url);
float countZeroElements();
std::vector<RandomizedTree> trees_;
private:
int classes_;
int num_quant_bits_;
mutable uchar **posteriors_;
mutable unsigned short *ptemp_;
int original_num_classes_;
bool keep_floats_;
};
/****************************************************************************************\
* One-Way Descriptor *
\****************************************************************************************/
class CV_EXPORTS OneWayDescriptor
{
public:
OneWayDescriptor();
~OneWayDescriptor();
// allocates memory for given descriptor parameters
void Allocate(int pose_count, CvSize size, int nChannels);
// GenerateSamples: generates affine transformed patches with averaging them over small transformation variations.
// If external poses and transforms were specified, uses them instead of generating random ones
// - pose_count: the number of poses to be generated
// - frontal: the input patch (can be a roi in a larger image)
// - norm: if nonzero, normalizes the output patch so that the sum of pixel intensities is 1
void GenerateSamples(int pose_count, IplImage* frontal, int norm = 0);
// GenerateSamplesFast: generates affine transformed patches with averaging them over small transformation variations.
// Uses precalculated transformed pca components.
// - frontal: the input patch (can be a roi in a larger image)
// - pca_hr_avg: pca average vector
// - pca_hr_eigenvectors: pca eigenvectors
// - pca_descriptors: an array of precomputed descriptors of pca components containing their affine transformations
// pca_descriptors[0] corresponds to the average, pca_descriptors[1]-pca_descriptors[pca_dim] correspond to eigenvectors
void GenerateSamplesFast(IplImage* frontal, CvMat* pca_hr_avg,
CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors);
// sets the poses and corresponding transforms
void SetTransforms(CvAffinePose* poses, CvMat** transforms);
// Initialize: builds a descriptor.
// - pose_count: the number of poses to build. If poses were set externally, uses them rather than generating random ones
// - frontal: input patch. Can be a roi in a larger image
// - feature_name: the feature name to be associated with the descriptor
// - norm: if 1, the affine transformed patches are normalized so that their sum is 1
void Initialize(int pose_count, IplImage* frontal, const char* feature_name = 0, int norm = 0);
// InitializeFast: builds a descriptor using precomputed descriptors of pca components
// - pose_count: the number of poses to build
// - frontal: input patch. Can be a roi in a larger image
// - feature_name: the feature name to be associated with the descriptor
// - pca_hr_avg: average vector for PCA
// - pca_hr_eigenvectors: PCA eigenvectors (one vector per row)
// - pca_descriptors: precomputed descriptors of PCA components, the first descriptor for the average vector
// followed by the descriptors for eigenvectors
void InitializeFast(int pose_count, IplImage* frontal, const char* feature_name,
CvMat* pca_hr_avg, CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors);
// ProjectPCASample: unwarps an image patch into a vector and projects it into PCA space
// - patch: input image patch
// - avg: PCA average vector
// - eigenvectors: PCA eigenvectors, one per row
// - pca_coeffs: output PCA coefficients
void ProjectPCASample(IplImage* patch, CvMat* avg, CvMat* eigenvectors, CvMat* pca_coeffs) const;
// InitializePCACoeffs: projects all warped patches into PCA space
// - avg: PCA average vector
// - eigenvectors: PCA eigenvectors, one per row
void InitializePCACoeffs(CvMat* avg, CvMat* eigenvectors);
// EstimatePose: finds the closest match between an input patch and a set of patches with different poses
// - patch: input image patch
// - pose_idx: the output index of the closest pose
// - distance: the distance to the closest pose (L2 distance)
void EstimatePose(IplImage* patch, int& pose_idx, float& distance) const;
// EstimatePosePCA: finds the closest match between an input patch and a set of patches with different poses.
// The distance between patches is computed in PCA space
// - patch: input image patch
// - pose_idx: the output index of the closest pose
// - distance: distance to the closest pose (L2 distance in PCA space)
// - avg: PCA average vector. If 0, matching without PCA is used
// - eigenvectors: PCA eigenvectors, one per row
void EstimatePosePCA(CvArr* patch, int& pose_idx, float& distance, CvMat* avg, CvMat* eigenvalues) const;
// GetPatchSize: returns the size of each image patch after warping (2 times smaller than the input patch)
CvSize GetPatchSize() const
{
return m_patch_size;
}
// GetInputPatchSize: returns the required size of the patch that the descriptor is built from
// (2 time larger than the patch after warping)
CvSize GetInputPatchSize() const
{
return cvSize(m_patch_size.width*2, m_patch_size.height*2);
}
// GetPatch: returns a patch corresponding to specified pose index
// - index: pose index
// - return value: the patch corresponding to specified pose index
IplImage* GetPatch(int index);
// GetPose: returns a pose corresponding to specified pose index
// - index: pose index
// - return value: the pose corresponding to specified pose index
CvAffinePose GetPose(int index) const;
// Save: saves all patches with different poses to a specified path
void Save(const char* path);
// ReadByName: reads a descriptor from a file storage
// - fs: file storage
// - parent: parent node
// - name: node name
// - return value: 1 if succeeded, 0 otherwise
int ReadByName(CvFileStorage* fs, CvFileNode* parent, const char* name);
// ReadByName: reads a descriptor from a file node
// - parent: parent node
// - name: node name
// - return value: 1 if succeeded, 0 otherwise
int ReadByName(const FileNode &parent, const char* name);
// Write: writes a descriptor into a file storage
// - fs: file storage
// - name: node name
void Write(CvFileStorage* fs, const char* name);
// GetFeatureName: returns a name corresponding to a feature
const char* GetFeatureName() const;
// GetCenter: returns the center of the feature
CvPoint GetCenter() const;
void SetPCADimHigh(int pca_dim_high) {m_pca_dim_high = pca_dim_high;};
void SetPCADimLow(int pca_dim_low) {m_pca_dim_low = pca_dim_low;};
int GetPCADimLow() const;
int GetPCADimHigh() const;
CvMat** GetPCACoeffs() const {return m_pca_coeffs;}
protected:
int m_pose_count; // the number of poses
CvSize m_patch_size; // size of each image
IplImage** m_samples; // an array of length m_pose_count containing the patch in different poses
IplImage* m_input_patch;
IplImage* m_train_patch;
CvMat** m_pca_coeffs; // an array of length m_pose_count containing pca decomposition of the patch in different poses
CvAffinePose* m_affine_poses; // an array of poses
CvMat** m_transforms; // an array of affine transforms corresponding to poses
string m_feature_name; // the name of the feature associated with the descriptor
CvPoint m_center; // the coordinates of the feature (the center of the input image ROI)
int m_pca_dim_high; // the number of descriptor pca components to use for generating affine poses
int m_pca_dim_low; // the number of pca components to use for comparison
};
// OneWayDescriptorBase: encapsulates functionality for training/loading a set of one way descriptors
// and finding the nearest closest descriptor to an input feature
class CV_EXPORTS OneWayDescriptorBase
{
public:
// creates an instance of OneWayDescriptor from a set of training files
// - patch_size: size of the input (large) patch
// - pose_count: the number of poses to generate for each descriptor
// - train_path: path to training files
// - pca_config: the name of the file that contains PCA for small patches (2 times smaller
// than patch_size each dimension
// - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size)
// - pca_desc_config: the name of the file that contains descriptors of PCA components
OneWayDescriptorBase(CvSize patch_size, int pose_count, const char* train_path = 0, const char* pca_config = 0,
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1,
int pca_dim_high = 100, int pca_dim_low = 100);
OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename, const string &train_path = string(), const string &images_list = string(),
float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1,
int pca_dim_high = 100, int pca_dim_low = 100);
virtual ~OneWayDescriptorBase();
void clear ();
// Allocate: allocates memory for a given number of descriptors
void Allocate(int train_feature_count);
// AllocatePCADescriptors: allocates memory for pca descriptors
void AllocatePCADescriptors();
// returns patch size
CvSize GetPatchSize() const {return m_patch_size;};
// returns the number of poses for each descriptor
int GetPoseCount() const {return m_pose_count;};
// returns the number of pyramid levels
int GetPyrLevels() const {return m_pyr_levels;};
// returns the number of descriptors
int GetDescriptorCount() const {return m_train_feature_count;};
// CreateDescriptorsFromImage: creates descriptors for each of the input features
// - src: input image
// - features: input features
// - pyr_levels: the number of pyramid levels
void CreateDescriptorsFromImage(IplImage* src, const std::vector<cv::KeyPoint>& features);
// CreatePCADescriptors: generates descriptors for PCA components, needed for fast generation of feature descriptors
void CreatePCADescriptors();
// returns a feature descriptor by feature index
const OneWayDescriptor* GetDescriptor(int desc_idx) const {return &m_descriptors[desc_idx];};
// FindDescriptor: finds the closest descriptor
// - patch: input image patch
// - desc_idx: output index of the closest descriptor to the input patch
// - pose_idx: output index of the closest pose of the closest descriptor to the input patch
// - distance: distance from the input patch to the closest feature pose
// - _scales: scales of the input patch for each descriptor
// - scale_ranges: input scales variation (float[2])
void FindDescriptor(IplImage* patch, int& desc_idx, int& pose_idx, float& distance, float* _scale = 0, float* scale_ranges = 0) const;
// - patch: input image patch
// - n: number of the closest indexes
// - desc_idxs: output indexes of the closest descriptor to the input patch (n)
// - pose_idx: output indexes of the closest pose of the closest descriptor to the input patch (n)
// - distances: distance from the input patch to the closest feature pose (n)
// - _scales: scales of the input patch
// - scale_ranges: input scales variation (float[2])
void FindDescriptor(IplImage* patch, int n, std::vector<int>& desc_idxs, std::vector<int>& pose_idxs,
std::vector<float>& distances, std::vector<float>& _scales, float* scale_ranges = 0) const;
// FindDescriptor: finds the closest descriptor
// - src: input image
// - pt: center of the feature
// - desc_idx: output index of the closest descriptor to the input patch
// - pose_idx: output index of the closest pose of the closest descriptor to the input patch
// - distance: distance from the input patch to the closest feature pose
void FindDescriptor(IplImage* src, cv::Point2f pt, int& desc_idx, int& pose_idx, float& distance) const;
// InitializePoses: generates random poses
void InitializePoses();
// InitializeTransformsFromPoses: generates 2x3 affine matrices from poses (initializes m_transforms)
void InitializeTransformsFromPoses();
// InitializePoseTransforms: subsequently calls InitializePoses and InitializeTransformsFromPoses
void InitializePoseTransforms();
// InitializeDescriptor: initializes a descriptor
// - desc_idx: descriptor index
// - train_image: image patch (ROI is supported)
// - feature_label: feature textual label
void InitializeDescriptor(int desc_idx, IplImage* train_image, const char* feature_label);
void InitializeDescriptor(int desc_idx, IplImage* train_image, const cv::KeyPoint& keypoint, const char* feature_label);
// InitializeDescriptors: load features from an image and create descriptors for each of them
void InitializeDescriptors(IplImage* train_image, const vector<cv::KeyPoint>& features,
const char* feature_label = "", int desc_start_idx = 0);
// Write: writes this object to a file storage
// - fs: output filestorage
void Write (FileStorage &fs) const;
// Read: reads OneWayDescriptorBase object from a file node
// - fn: input file node
void Read (const FileNode &fn);
// LoadPCADescriptors: loads PCA descriptors from a file
// - filename: input filename
int LoadPCADescriptors(const char* filename);
// LoadPCADescriptors: loads PCA descriptors from a file node
// - fn: input file node
int LoadPCADescriptors(const FileNode &fn);
// SavePCADescriptors: saves PCA descriptors to a file
// - filename: output filename
void SavePCADescriptors(const char* filename);
// SavePCADescriptors: saves PCA descriptors to a file storage
// - fs: output file storage
void SavePCADescriptors(CvFileStorage* fs) const;
// GeneratePCA: calculate and save PCA components and descriptors
// - img_path: path to training PCA images directory
// - images_list: filename with filenames of training PCA images
void GeneratePCA(const char* img_path, const char* images_list, int pose_count=500);
// SetPCAHigh: sets the high resolution pca matrices (copied to internal structures)
void SetPCAHigh(CvMat* avg, CvMat* eigenvectors);
// SetPCALow: sets the low resolution pca matrices (copied to internal structures)
void SetPCALow(CvMat* avg, CvMat* eigenvectors);
int GetLowPCA(CvMat** avg, CvMat** eigenvectors)
{
*avg = m_pca_avg;
*eigenvectors = m_pca_eigenvectors;
return m_pca_dim_low;
};
int GetPCADimLow() const {return m_pca_dim_low;};
int GetPCADimHigh() const {return m_pca_dim_high;};
void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree
// GetPCAFilename: get default PCA filename
static string GetPCAFilename () { return "pca.yml"; }
virtual bool empty() const { return m_train_feature_count <= 0 ? true : false; }
protected:
CvSize m_patch_size; // patch size
int m_pose_count; // the number of poses for each descriptor
int m_train_feature_count; // the number of the training features
OneWayDescriptor* m_descriptors; // array of train feature descriptors
CvMat* m_pca_avg; // PCA average Vector for small patches
CvMat* m_pca_eigenvectors; // PCA eigenvectors for small patches
CvMat* m_pca_hr_avg; // PCA average Vector for large patches
CvMat* m_pca_hr_eigenvectors; // PCA eigenvectors for large patches
OneWayDescriptor* m_pca_descriptors; // an array of PCA descriptors
cv::flann::Index* m_pca_descriptors_tree;
CvMat* m_pca_descriptors_matrix;
CvAffinePose* m_poses; // array of poses
CvMat** m_transforms; // array of affine transformations corresponding to poses
int m_pca_dim_high;
int m_pca_dim_low;
int m_pyr_levels;
float scale_min;
float scale_max;
float scale_step;
// SavePCAall: saves PCA components and descriptors to a file storage
// - fs: output file storage
void SavePCAall (FileStorage &fs) const;
// LoadPCAall: loads PCA components and descriptors from a file node
// - fn: input file node
void LoadPCAall (const FileNode &fn);
};
class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase
{
public:
// creates an instance of OneWayDescriptorObject from a set of training files
// - patch_size: size of the input (large) patch
// - pose_count: the number of poses to generate for each descriptor
// - train_path: path to training files
// - pca_config: the name of the file that contains PCA for small patches (2 times smaller
// than patch_size each dimension
// - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size)
// - pca_desc_config: the name of the file that contains descriptors of PCA components
OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config,
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1);
OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename,
const string &train_path = string (), const string &images_list = string (),
float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1);
virtual ~OneWayDescriptorObject();
// Allocate: allocates memory for a given number of features
// - train_feature_count: the total number of features
// - object_feature_count: the number of features extracted from the object
void Allocate(int train_feature_count, int object_feature_count);
void SetLabeledFeatures(const vector<cv::KeyPoint>& features) {m_train_features = features;};
vector<cv::KeyPoint>& GetLabeledFeatures() {return m_train_features;};
const vector<cv::KeyPoint>& GetLabeledFeatures() const {return m_train_features;};
vector<cv::KeyPoint> _GetLabeledFeatures() const;
// IsDescriptorObject: returns 1 if descriptor with specified index is positive, otherwise 0
int IsDescriptorObject(int desc_idx) const;
// MatchPointToPart: returns the part number of a feature if it matches one of the object parts, otherwise -1
int MatchPointToPart(CvPoint pt) const;
// GetDescriptorPart: returns the part number of the feature corresponding to a specified descriptor
// - desc_idx: descriptor index
int GetDescriptorPart(int desc_idx) const;
void InitializeObjectDescriptors(IplImage* train_image, const vector<cv::KeyPoint>& features,
const char* feature_label, int desc_start_idx = 0, float scale = 1.0f,
int is_background = 0);
// GetObjectFeatureCount: returns the number of object features
int GetObjectFeatureCount() const {return m_object_feature_count;};
protected:
int* m_part_id; // contains part id for each of object descriptors
vector<cv::KeyPoint> m_train_features; // train features
int m_object_feature_count; // the number of the positive features
};
/****************************************************************************************\
* FeatureDetector *
\****************************************************************************************/
/*
* Abstract base class for 2D image feature detectors.
*/
class CV_EXPORTS FeatureDetector
{
public:
virtual ~FeatureDetector();
/*
* Detect keypoints in an image.
* image The image.
* keypoints The detected keypoints.
* mask Mask specifying where to look for keypoints (optional). Must be a char
* matrix with non-zero values in the region of interest.
*/
void detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
/*
* Detect keypoints in an image set.
* images Image collection.
* keypoints Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
* masks Masks for image set. masks[i] is a mask for images[i].
*/
void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;
// Read detector object from a file node.
virtual void read( const FileNode& );
// Read detector object from a file node.
virtual void write( FileStorage& ) const;
// Return true if detector object is empty
virtual bool empty() const;
// Create feature detector by detector name.
static Ptr<FeatureDetector> create( const string& detectorType );
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;
/*
* Remove keypoints that are not in the mask.
* Helper function, useful when wrapping a library call for keypoint detection that
* does not support a mask argument.
*/
static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints );
};
class CV_EXPORTS FastFeatureDetector : public FeatureDetector
{
public:
FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
int threshold;
bool nonmaxSuppression;
};
class CV_EXPORTS GoodFeaturesToTrackDetector : public FeatureDetector
{
public:
class CV_EXPORTS Params
{
public:
Params( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1.,
int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
int maxCorners;
double qualityLevel;
double minDistance;
int blockSize;
bool useHarrisDetector;
double k;
};
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=GoodFeaturesToTrackDetector::Params() );
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel, double minDistance,
int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
Params params;
};
class CV_EXPORTS MserFeatureDetector : public FeatureDetector
{
public:
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
MserFeatureDetector( int delta, int minArea, int maxArea, double maxVariation, double minDiversity,
int maxEvolution, double areaThreshold, double minMargin, int edgeBlurSize );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
MSER mser;
};
class CV_EXPORTS StarFeatureDetector : public FeatureDetector
{
public:
StarFeatureDetector( const CvStarDetectorParams& params=cvStarDetectorParams() );
StarFeatureDetector( int maxSize, int responseThreshold=30, int lineThresholdProjected = 10,
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
StarDetector star;
};
class CV_EXPORTS SiftFeatureDetector : public FeatureDetector
{
public:
SiftFeatureDetector( const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
SiftFeatureDetector( double threshold, double edgeThreshold,
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
SIFT sift;
};
class CV_EXPORTS SurfFeatureDetector : public FeatureDetector
{
public:
SurfFeatureDetector( double hessianThreshold=400., int octaves=3, int octaveLayers=4, bool upright=false );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
SURF surf;
};
/** Feature detector for the ORB feature
* Basically fast followed by a Harris check
*/
class CV_EXPORTS OrbFeatureDetector : public cv::FeatureDetector
{
public:
/** Default constructor
* @param n_features the number of desired features
* @param params parameters to use
*/
OrbFeatureDetector(size_t n_features = 700, ORB::CommonParams params = ORB::CommonParams());
virtual void read(const cv::FileNode&);
virtual void write(cv::FileStorage&) const;
protected:
virtual void
detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask = cv::Mat()) const;
private:
/** the ORB object we use for the computations */
mutable ORB orb_;
/** The parameters used */
ORB::CommonParams params_;
/** the number of features that need to be retrieved */
unsigned int n_features_;
};
class CV_EXPORTS SimpleBlobDetector : public cv::FeatureDetector
{
public:
struct CV_EXPORTS Params
{
Params();
float thresholdStep;
float minThreshold;
float maxThreshold;
size_t minRepeatability;
float minDistBetweenBlobs;
bool filterByColor;
uchar blobColor;
bool filterByArea;
float minArea, maxArea;
bool filterByCircularity;
float minCircularity, maxCircularity;
bool filterByInertia;
float minInertiaRatio, maxInertiaRatio;
bool filterByConvexity;
float minConvexity, maxConvexity;
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
};
SimpleBlobDetector(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
struct CV_EXPORTS Center
{
Point2d location;
double radius;
double confidence;
};
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
virtual void findBlobs(const cv::Mat &image, const cv::Mat &binaryImage, std::vector<Center> ¢ers) const;
Params params;
};
class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
{
public:
class CV_EXPORTS Params
{
public:
Params( float initFeatureScale=1.f, int featureScaleLevels=1, float featureScaleMul=0.1f,
int initXyStep=6, int initImgBound=0, bool varyXyStepWithScale=true, bool varyImgBoundWithScale=false );
float initFeatureScale;
int featureScaleLevels;
float featureScaleMul;
int initXyStep;
int initImgBound;
bool varyXyStepWithScale;
bool varyImgBoundWithScale;
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
};
DenseFeatureDetector( const DenseFeatureDetector::Params& params=DenseFeatureDetector::Params() );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
Params params;
};
/*
* Adapts a detector to partition the source image into a grid and detect
* points in each cell.
*/
class CV_EXPORTS GridAdaptedFeatureDetector : public FeatureDetector
{
public:
/*
* detector Detector that will be adapted.
* maxTotalKeypoints Maximum count of keypoints detected on the image. Only the strongest keypoints
* will be keeped.
* gridRows Grid rows count.
* gridCols Grid column count.
*/
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxTotalKeypoints=1000,
int gridRows=4, int gridCols=4 );
// TODO implement read/write
virtual bool empty() const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
Ptr<FeatureDetector> detector;
int maxTotalKeypoints;
int gridRows;
int gridCols;
};
/*
* Adapts a detector to detect points over multiple levels of a Gaussian
* pyramid. Useful for detectors that are not inherently scaled.
*/
class CV_EXPORTS PyramidAdaptedFeatureDetector : public FeatureDetector
{
public:
// maxLevel - The 0-based index of the last pyramid layer
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 );
// TODO implement read/write
virtual bool empty() const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
Ptr<FeatureDetector> detector;
int maxLevel;
};
/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
* and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
*/
class CV_EXPORTS AdjusterAdapter: public FeatureDetector
{
public:
/** pure virtual interface
*/
virtual ~AdjusterAdapter() {}
/** too few features were detected so, adjust the detector params accordingly
* \param min the minimum number of desired features
* \param n_detected the number previously detected
*/
virtual void tooFew(int min, int n_detected) = 0;
/** too many features were detected so, adjust the detector params accordingly
* \param max the maximum number of desired features
* \param n_detected the number previously detected
*/
virtual void tooMany(int max, int n_detected) = 0;
/** are params maxed out or still valid?
* \return false if the parameters can't be adjusted any more
*/
virtual bool good() const = 0;
virtual Ptr<AdjusterAdapter> clone() const = 0;
static Ptr<AdjusterAdapter> create( const string& detectorType );
};
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
* of features are detected.
* Beware that this is not thread safe - as the adjustment of parameters breaks the const
* of the detection routine...
* /TODO Make this const correct and thread safe
*
* sample usage:
//will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
//FAST feature detection 10 times until that number of keypoints are found
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));
*/
class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:
/** \param adjaster an AdjusterAdapter that will do the detection and parameter adjustment
* \param max_features the maximum desired number of features
* \param max_iters the maximum number of times to try to adjust the feature detector params
* for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
* \param min_features the minimum desired features
*/
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster, int min_features=400, int max_features=500, int max_iters=5 );
virtual bool empty() const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
private:
DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&);
int escape_iters_;
int min_features_, max_features_;
const Ptr<AdjusterAdapter> adjuster_;
};
/**\brief an adjust for the FAST detector. This will basically decrement or increment the
* threshold by 1
*/
class CV_EXPORTS FastAdjuster: public AdjusterAdapter
{
public:
/**\param init_thresh the initial threshold to start with, default = 20
* \param nonmax whether to use non max or not for fast feature detection
*/
FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);
virtual void tooFew(int min, int n_detected);
virtual void tooMany(int max, int n_detected);
virtual bool good() const;
virtual Ptr<AdjusterAdapter> clone() const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
int thresh_;
bool nonmax_;
int init_thresh_, min_thresh_, max_thresh_;
};
/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
* TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
*/
class CV_EXPORTS StarAdjuster: public AdjusterAdapter
{
public:
StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.);
virtual void tooFew(int min, int n_detected);
virtual void tooMany(int max, int n_detected);
virtual bool good() const;
virtual Ptr<AdjusterAdapter> clone() const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
double thresh_, init_thresh_, min_thresh_, max_thresh_;
CvStarDetectorParams params_; //todo use these instead of thresh_
};
class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
{
public:
SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );
virtual void tooFew(int min, int n_detected);
virtual void tooMany(int max, int n_detected);
virtual bool good() const;
virtual Ptr<AdjusterAdapter> clone() const;
protected:
virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
double thresh_, init_thresh_, min_thresh_, max_thresh_;
};
CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
float maxDeltaX, float maxDeltaY );
/****************************************************************************************\
* DescriptorExtractor *
\****************************************************************************************/
/*
* Abstract base class for computing descriptors for image keypoints.
*
* In this interface we assume a keypoint descriptor can be represented as a
* dense, fixed-dimensional vector of some basic type. Most descriptors used
* in practice follow this pattern, as it makes it very easy to compute
* distances between descriptors. Therefore we represent a collection of
* descriptors as a cv::Mat, where each row is one keypoint descriptor.
*/
class CV_EXPORTS DescriptorExtractor
{
public:
virtual ~DescriptorExtractor();
/*
* Compute the descriptors for a set of keypoints in an image.
* image The image.
* keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
* descriptors Copmputed descriptors. Row i is the descriptor for keypoint i.
*/
void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
/*
* Compute the descriptors for a keypoints collection detected in image collection.
* images Image collection.
* keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i].
* Keypoints for which a descriptor cannot be computed are removed.
* descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
*/
void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;
virtual void read( const FileNode& );
virtual void write( FileStorage& ) const;
virtual int descriptorSize() const = 0;
virtual int descriptorType() const = 0;
virtual bool empty() const;
static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );
protected:
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;
/*
* Remove keypoints within borderPixels of an image edge.
*/
static void removeBorderKeypoints( vector<KeyPoint>& keypoints,
Size imageSize, int borderSize );
};
/*
* SiftDescriptorExtractor
*/
class CV_EXPORTS SiftDescriptorExtractor : public DescriptorExtractor
{
public:
SiftDescriptorExtractor( const SIFT::DescriptorParams& descriptorParams=SIFT::DescriptorParams(),
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
SiftDescriptorExtractor( double magnification, bool isNormalize=true, bool recalculateAngles=true,
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
virtual void read( const FileNode &fn );
virtual void write( FileStorage &fs ) const;
virtual int descriptorSize() const;
virtual int descriptorType() const;
protected:
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
SIFT sift;
};
/*
* SurfDescriptorExtractor
*/
class CV_EXPORTS SurfDescriptorExtractor : public DescriptorExtractor
{
public:
SurfDescriptorExtractor( int nOctaves=4, int nOctaveLayers=2, bool extended=false, bool upright=false );
virtual void read( const FileNode &fn );
virtual void write( FileStorage &fs ) const;
virtual int descriptorSize() const;
virtual int descriptorType() const;
protected:
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
SURF surf;
};
/** The descriptor extractor for the ORB descriptor
* There are two ways to speed up its computation:
* - if you know the step size of the integral image, use setStepSize so that offsets are precomputed and cached
* - if you know the integral image, use setIntegralImage so that it is not recomputed. This calls
* setStepSize automatically
*/
class CV_EXPORTS OrbDescriptorExtractor : public cv::DescriptorExtractor
{
public:
/** default constructor
* @param params parameters to use
*/
OrbDescriptorExtractor(ORB::CommonParams params = ORB::CommonParams());
/** destructor */
~OrbDescriptorExtractor()
{
}
virtual int descriptorSize() const;
virtual int descriptorType() const;
virtual void read(const cv::FileNode&);
virtual void write(cv::FileStorage&) const;
protected:
void computeImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors) const;
private:
/** the ORB object we use for the computations */
mutable ORB orb_;
/** The parameters used */
ORB::CommonParams params_;
};
/*
* CalonderDescriptorExtractor
*/
template<typename T>
class CV_EXPORTS CalonderDescriptorExtractor : public DescriptorExtractor
{
public:
CalonderDescriptorExtractor( const string& classifierFile );
virtual void read( const FileNode &fn );
virtual void write( FileStorage &fs ) const;
virtual int descriptorSize() const { return classifier_.classes(); }
virtual int descriptorType() const { return DataType<T>::type; }
virtual bool empty() const;
protected:
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
RTreeClassifier classifier_;
static const int BORDER_SIZE = 16;
};
template<typename T>
CalonderDescriptorExtractor<T>::CalonderDescriptorExtractor(const std::string& classifier_file)
{
classifier_.read( classifier_file.c_str() );
}
template<typename T>
void CalonderDescriptorExtractor<T>::computeImpl( const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints,
cv::Mat& descriptors) const
{
// Cannot compute descriptors for keypoints on the image border.
KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE);
/// @todo Check 16-byte aligned
descriptors.create(keypoints.size(), classifier_.classes(), cv::DataType<T>::type);
int patchSize = RandomizedTree::PATCH_SIZE;
int offset = patchSize / 2;
for (size_t i = 0; i < keypoints.size(); ++i)
{
cv::Point2f pt = keypoints[i].pt;
IplImage ipl = image( Rect((int)(pt.x - offset), (int)(pt.y - offset), patchSize, patchSize) );
classifier_.getSignature( &ipl, descriptors.ptr<T>(i));
}
}
template<typename T>
void CalonderDescriptorExtractor<T>::read( const FileNode& )
{}
template<typename T>
void CalonderDescriptorExtractor<T>::write( FileStorage& ) const
{}
template<typename T>
bool CalonderDescriptorExtractor<T>::empty() const
{
return classifier_.trees_.empty();
}
/*
* OpponentColorDescriptorExtractor
*
* Adapts a descriptor extractor to compute descripors in Opponent Color Space
* (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
* Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
* (set in constructor) computes descriptors on each of the three channel and concatenate
* them into a single color descriptor.
*/
class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor
{
public:
OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor );
virtual void read( const FileNode& );
virtual void write( FileStorage& ) const;
virtual int descriptorSize() const;
virtual int descriptorType() const;
virtual bool empty() const;
protected:
virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
Ptr<DescriptorExtractor> descriptorExtractor;
};
/*
* BRIEF Descriptor
*/
class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
{
public:
static const int PATCH_SIZE = 48;
static const int KERNEL_SIZE = 9;
// bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
BriefDescriptorExtractor( int bytes = 32 );
virtual void read( const FileNode& );
virtual void write( FileStorage& ) const;
virtual int descriptorSize() const;
virtual int descriptorType() const;
/// @todo read and write for brief
protected:
virtual void computeImpl(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const;
typedef void(*PixelTestFn)(const Mat&, const std::vector<KeyPoint>&, Mat&);
int bytes_;
PixelTestFn test_fn_;
};
/****************************************************************************************\
* Distance *
\****************************************************************************************/
template<typename T>
struct CV_EXPORTS Accumulator
{
typedef T Type;
};
template<> struct Accumulator<unsigned char> { typedef float Type; };
template<> struct Accumulator<unsigned short> { typedef float Type; };
template<> struct Accumulator<char> { typedef float Type; };
template<> struct Accumulator<short> { typedef float Type; };
/*
* Squared Euclidean distance functor
*/
template<class T>
struct CV_EXPORTS SL2
{
typedef T ValueType;
typedef typename Accumulator<T>::Type ResultType;
ResultType operator()( const T* a, const T* b, int size ) const
{
ResultType result = ResultType();
for( int i = 0; i < size; i++ )
{
ResultType diff = (ResultType)(a[i] - b[i]);
result += diff*diff;
}
return result;
}
};
/*
* Euclidean distance functor
*/
template<class T>
struct CV_EXPORTS L2
{
typedef T ValueType;
typedef typename Accumulator<T>::Type ResultType;
ResultType operator()( const T* a, const T* b, int size ) const
{
ResultType result = ResultType();
for( int i = 0; i < size; i++ )
{
ResultType diff = (ResultType)(a[i] - b[i]);
result += diff*diff;
}
return (ResultType)sqrt((double)result);
}
};
/*
* Manhattan distance (city block distance) functor
*/
template<class T>
struct CV_EXPORTS L1
{
typedef T ValueType;
typedef typename Accumulator<T>::Type ResultType;
ResultType operator()( const T* a, const T* b, int size ) const
{
ResultType result = ResultType();
for( int i = 0; i < size; i++ )
{
ResultType diff = a[i] - b[i];
result += (ResultType)fabs( diff );
}
return result;
}
};
/*
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
* bit count of A exclusive XOR'ed with B
*/
struct CV_EXPORTS HammingLUT
{
typedef unsigned char ValueType;
typedef int ResultType;
/** this will count the bits in a ^ b
*/
ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const;
/** \brief given a byte, count the bits using a compile time generated look up table
* \param b the byte to count bits. The look up table has an entry for all
* values of b, where that entry is the number of bits.
* \return the number of bits in byte b
*/
static unsigned char byteBitsLookUp(unsigned char b);
};
/// Hamming distance functor, this one will try to use gcc's __builtin_popcountl
/// but will fall back on HammingLUT if not available
/// bit count of A exclusive XOR'ed with B
struct CV_EXPORTS Hamming
{
typedef unsigned char ValueType;
//! important that this is signed as weird behavior happens
// in BruteForce if not
typedef int ResultType;
/** this will count the bits in a ^ b, using __builtin_popcountl try compiling with sse4
*/
ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const;
};
/****************************************************************************************\
* DMatch *
\****************************************************************************************/
/*
* Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
*/
struct CV_EXPORTS DMatch
{
DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(std::numeric_limits<float>::max()) {}
DMatch( int _queryIdx, int _trainIdx, float _distance ) :
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}
int queryIdx; // query descriptor index
int trainIdx; // train descriptor index
int imgIdx; // train image index
float distance;
// less is better
bool operator<( const DMatch &m ) const
{
return distance < m.distance;
}
};
/****************************************************************************************\
* DescriptorMatcher *
\****************************************************************************************/
/*
* Abstract base class for matching two sets of descriptors.
*/
class CV_EXPORTS DescriptorMatcher
{
public:
virtual ~DescriptorMatcher();
/*
* Add descriptors to train descriptor collection.
* descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image.
*/
virtual void add( const vector<Mat>& descriptors );
/*
* Get train descriptors collection.
*/
const vector<Mat>& getTrainDescriptors() const;
/*
* Clear train descriptors collection.
*/
virtual void clear();
/*
* Return true if there are not train descriptors in collection.
*/
virtual bool empty() const;
/*
* Return true if the matcher supports mask in match methods.
*/
virtual bool isMaskSupported() const = 0;
/*
* Train matcher (e.g. train flann index).
* In all methods to match the method train() is run every time before matching.
* Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
* of this method, other matchers really train their inner structures
* (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
* of train() should check the class object state and do traing/retraining
* only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
* if it has not trained yet or if new descriptors have been added to the train
* collection).
*/
virtual void train();
/*
* Group of methods to match descriptors from image pair.
* Method train() is run in this methods.
*/
// Find one best match for each query descriptor (if mask is empty).
void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
vector<DMatch>& matches, const Mat& mask=Mat() ) const;
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
// Find best matches for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
/*
* Group of methods to match descriptors from one image to image set.
* See description of similar methods for matching image pair above.
*/
void match( const Mat& queryDescriptors, vector<DMatch>& matches,
const vector<Mat>& masks=vector<Mat>() );
void knnMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
// Reads matcher object from a file node
virtual void read( const FileNode& );
// Writes matcher object to a file storage
virtual void write( FileStorage& ) const;
// Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
// both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
// but with empty train data.
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
protected:
/*
* Class to work with descriptors from several images as with one merged matrix.
* It is used e.g. in FlannBasedMatcher.
*/
class CV_EXPORTS DescriptorCollection
{
public:
DescriptorCollection();
DescriptorCollection( const DescriptorCollection& collection );
virtual ~DescriptorCollection();
// Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
void set( const vector<Mat>& descriptors );
virtual void clear();
const Mat& getDescriptors() const;
const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
const Mat getDescriptor( int globalDescIdx ) const;
void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
int size() const;
protected:
Mat mergedDescriptors;
vector<int> startIdxs;
};
// In fact the matching is implemented only by the following two methods. These methods suppose
// that the class object has been trained already. Public match methods call these methods
// after calling train().
virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
static bool isMaskedOut( const vector<Mat>& masks, int queryIdx );
static Mat clone_op( Mat m ) { return m.clone(); }
void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const;
// Collection of descriptors from train images.
vector<Mat> trainDescCollection;
};
/*
* Brute-force descriptor matcher.
*
* For each descriptor in the first set, this matcher finds the closest
* descriptor in the second set by trying each one.
*
* For efficiency, BruteForceMatcher is templated on the distance metric.
* For float descriptors, a common choice would be cv::L2<float>.
*/
template<class Distance>
class CV_EXPORTS BruteForceMatcher : public DescriptorMatcher
{
public:
BruteForceMatcher( Distance d = Distance() ) : distance(d) {}
virtual ~BruteForceMatcher() {}
virtual bool isMaskSupported() const { return true; }
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
Distance distance;
private:
/*
* Next two methods are used to implement specialization.
*/
static void commonKnnMatchImpl( BruteForceMatcher<Distance>& matcher,
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks, bool compactResult );
static void commonRadiusMatchImpl( BruteForceMatcher<Distance>& matcher,
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult );
};
template<class Distance>
Ptr<DescriptorMatcher> BruteForceMatcher<Distance>::clone( bool emptyTrainData ) const
{
BruteForceMatcher* matcher = new BruteForceMatcher(distance);
if( !emptyTrainData )
{
matcher->trainDescCollection.resize(trainDescCollection.size());
std::transform( trainDescCollection.begin(), trainDescCollection.end(),
matcher->trainDescCollection.begin(), clone_op );
}
return matcher;
}
template<class Distance>
void BruteForceMatcher<Distance>::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks, bool compactResult )
{
commonKnnMatchImpl( *this, queryDescriptors, matches, k, masks, compactResult );
}
template<class Distance>
void BruteForceMatcher<Distance>::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches,
float maxDistance, const vector<Mat>& masks, bool compactResult )
{
commonRadiusMatchImpl( *this, queryDescriptors, matches, maxDistance, masks, compactResult );
}
template<class Distance>
inline void BruteForceMatcher<Distance>::commonKnnMatchImpl( BruteForceMatcher<Distance>& matcher,
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& masks, bool compactResult )
{
typedef typename Distance::ValueType ValueType;
typedef typename Distance::ResultType DistanceType;
CV_DbgAssert( !queryDescriptors.empty() );
CV_Assert( DataType<ValueType>::type == queryDescriptors.type() );
int dimension = queryDescriptors.cols;
matches.reserve(queryDescriptors.rows);
size_t imgCount = matcher.trainDescCollection.size();
vector<Mat> allDists( imgCount ); // distances between one query descriptor and all train descriptors
for( size_t i = 0; i < imgCount; i++ )
allDists[i] = Mat( 1, matcher.trainDescCollection[i].rows, DataType<DistanceType>::type );
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ )
{
if( matcher.isMaskedOut( masks, qIdx ) )
{
if( !compactResult ) // push empty vector
matches.push_back( vector<DMatch>() );
}
else
{
// 1. compute distances between i-th query descriptor and all train descriptors
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ )
{
CV_Assert( DataType<ValueType>::type == matcher.trainDescCollection[iIdx].type() || matcher.trainDescCollection[iIdx].empty() );
CV_Assert( queryDescriptors.cols == matcher.trainDescCollection[iIdx].cols ||
matcher.trainDescCollection[iIdx].empty() );
const ValueType* d1 = (const ValueType*)(queryDescriptors.data + queryDescriptors.step*qIdx);
allDists[iIdx].setTo( Scalar::all(std::numeric_limits<DistanceType>::max()) );
for( int tIdx = 0; tIdx < matcher.trainDescCollection[iIdx].rows; tIdx++ )
{
if( masks.empty() || matcher.isPossibleMatch(masks[iIdx], qIdx, tIdx) )
{
const ValueType* d2 = (const ValueType*)(matcher.trainDescCollection[iIdx].data +
matcher.trainDescCollection[iIdx].step*tIdx);
allDists[iIdx].at<DistanceType>(0, tIdx) = matcher.distance(d1, d2, dimension);
}
}
}
// 2. choose k nearest matches for query[i]
matches.push_back( vector<DMatch>() );
vector<vector<DMatch> >::reverse_iterator curMatches = matches.rbegin();
for( int k = 0; k < knn; k++ )
{
DMatch bestMatch;
bestMatch.distance = std::numeric_limits<float>::max();
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ )
{
if( !allDists[iIdx].empty() )
{
double minVal;
Point minLoc;
minMaxLoc( allDists[iIdx], &minVal, 0, &minLoc, 0 );
if( minVal < bestMatch.distance )
bestMatch = DMatch( qIdx, minLoc.x, (int)iIdx, (float)minVal );
}
}
if( bestMatch.trainIdx == -1 )
break;
allDists[bestMatch.imgIdx].at<DistanceType>(0, bestMatch.trainIdx) = std::numeric_limits<DistanceType>::max();
curMatches->push_back( bestMatch );
}
//TODO should already be sorted at this point?
std::sort( curMatches->begin(), curMatches->end() );
}
}
}
template<class Distance>
inline void BruteForceMatcher<Distance>::commonRadiusMatchImpl( BruteForceMatcher<Distance>& matcher,
const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult )
{
typedef typename Distance::ValueType ValueType;
typedef typename Distance::ResultType DistanceType;
CV_DbgAssert( !queryDescriptors.empty() );
CV_Assert( DataType<ValueType>::type == queryDescriptors.type() );
int dimension = queryDescriptors.cols;
matches.reserve(queryDescriptors.rows);
size_t imgCount = matcher.trainDescCollection.size();
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ )
{
if( matcher.isMaskedOut( masks, qIdx ) )
{
if( !compactResult ) // push empty vector
matches.push_back( vector<DMatch>() );
}
else
{
matches.push_back( vector<DMatch>() );
vector<vector<DMatch> >::reverse_iterator curMatches = matches.rbegin();
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ )
{
CV_Assert( DataType<ValueType>::type == matcher.trainDescCollection[iIdx].type() ||
matcher.trainDescCollection[iIdx].empty() );
CV_Assert( queryDescriptors.cols == matcher.trainDescCollection[iIdx].cols ||
matcher.trainDescCollection[iIdx].empty() );
const ValueType* d1 = (const ValueType*)(queryDescriptors.data + queryDescriptors.step*qIdx);
for( int tIdx = 0; tIdx < matcher.trainDescCollection[iIdx].rows; tIdx++ )
{
if( masks.empty() || matcher.isPossibleMatch(masks[iIdx], qIdx, tIdx) )
{
const ValueType* d2 = (const ValueType*)(matcher.trainDescCollection[iIdx].data +
matcher.trainDescCollection[iIdx].step*tIdx);
DistanceType d = matcher.distance(d1, d2, dimension);
if( d < maxDistance )
curMatches->push_back( DMatch( qIdx, tIdx, (int)iIdx, (float)d ) );
}
}
}
std::sort( curMatches->begin(), curMatches->end() );
}
}
}
/*
* BruteForceMatcher L2 specialization
*/
template<>
void BruteForceMatcher<L2<float> >::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks, bool compactResult );
template<>
void BruteForceMatcher<L2<float> >::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches,
float maxDistance, const vector<Mat>& masks, bool compactResult );
/*
* Flann based matcher
*/
class CV_EXPORTS FlannBasedMatcher : public DescriptorMatcher
{
public:
FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
virtual void add( const vector<Mat>& descriptors );
virtual void clear();
// Reads matcher object from a file node
virtual void read( const FileNode& );
// Writes matcher object to a file storage
virtual void write( FileStorage& ) const;
virtual void train();
virtual bool isMaskSupported() const;
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
static void convertToDMatches( const DescriptorCollection& descriptors,
const Mat& indices, const Mat& distances,
vector<vector<DMatch> >& matches );
virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
Ptr<flann::IndexParams> indexParams;
Ptr<flann::SearchParams> searchParams;
Ptr<flann::Index> flannIndex;
DescriptorCollection mergedDescriptors;
int addedDescCount;
};
/****************************************************************************************\
* GenericDescriptorMatcher *
\****************************************************************************************/
/*
* Abstract interface for a keypoint descriptor and matcher
*/
class GenericDescriptorMatcher;
typedef GenericDescriptorMatcher GenericDescriptorMatch;
class CV_EXPORTS GenericDescriptorMatcher
{
public:
GenericDescriptorMatcher();
virtual ~GenericDescriptorMatcher();
/*
* Add train collection: images and keypoints from them.
* images A set of train images.
* ketpoints Keypoint collection that have been detected on train images.
*
* Keypoints for which a descriptor cannot be computed are removed. Such keypoints
* must be filtered in this method befor adding keypoints to train collection "trainPointCollection".
* If inheritor class need perform such prefiltering the method add() must be overloaded.
* In the other class methods programmer has access to the train keypoints by a constant link.
*/
virtual void add( const vector<Mat>& images,
vector<vector<KeyPoint> >& keypoints );
const vector<Mat>& getTrainImages() const;
const vector<vector<KeyPoint> >& getTrainKeypoints() const;
/*
* Clear images and keypoints storing in train collection.
*/
virtual void clear();
/*
* Returns true if matcher supports mask to match descriptors.
*/
virtual bool isMaskSupported() = 0;
/*
* Train some inner structures (e.g. flann index or decision trees).
* train() methods is run every time in matching methods. So the method implementation
* should has a check whether these inner structures need be trained/retrained or not.
*/
virtual void train();
/*
* Classifies query keypoints.
* queryImage The query image
* queryKeypoints Keypoints from the query image
* trainImage The train image
* trainKeypoints Keypoints from the train image
*/
// Classify keypoints from query image under one train image.
void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
// Classify keypoints from query image under train image collection.
void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );
/*
* Group of methods to match keypoints from image pair.
* Keypoints for which a descriptor cannot be computed are removed.
* train() method is called here.
*/
// Find one best match for each query descriptor (if mask is empty).
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<DMatch>& matches, const Mat& mask=Mat() ) const;
// Find k best matches for each query keypoint (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows.
// If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
// Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
/*
* Group of methods to match keypoints from one image to image set.
* See description of similar methods for matching image pair above.
*/
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
// Reads matcher object from a file node
virtual void read( const FileNode& );
// Writes matcher object to a file storage
virtual void write( FileStorage& ) const;
// Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
virtual bool empty() const;
// Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
// both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
// but with empty train data.
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
const string ¶msFilename=string() );
protected:
// In fact the matching is implemented only by the following two methods. These methods suppose
// that the class object has been trained already. Public match methods call these methods
// after calling train().
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks, bool compactResult ) = 0;
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult ) = 0;
/*
* A storage for sets of keypoints together with corresponding images and class IDs
*/
class CV_EXPORTS KeyPointCollection
{
public:
KeyPointCollection();
KeyPointCollection( const KeyPointCollection& collection );
void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints );
void clear();
// Returns the total number of keypoints in the collection
size_t keypointCount() const;
size_t imageCount() const;
const vector<vector<KeyPoint> >& getKeypoints() const;
const vector<KeyPoint>& getKeypoints( int imgIdx ) const;
const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const;
const KeyPoint& getKeyPoint( int globalPointIdx ) const;
void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const;
const vector<Mat>& getImages() const;
const Mat& getImage( int imgIdx ) const;
protected:
int pointCount;
vector<Mat> images;
vector<vector<KeyPoint> > keypoints;
// global indices of the first points in each image, startIndices.size() = keypoints.size()
vector<int> startIndices;
private:
static Mat clone_op( Mat m ) { return m.clone(); }
};
KeyPointCollection trainPointCollection;
};
/*
* OneWayDescriptorMatcher
*/
class OneWayDescriptorMatcher;
typedef OneWayDescriptorMatcher OneWayDescriptorMatch;
class CV_EXPORTS OneWayDescriptorMatcher : public GenericDescriptorMatcher
{
public:
class CV_EXPORTS Params
{
public:
static const int POSE_COUNT = 500;
static const int PATCH_WIDTH = 24;
static const int PATCH_HEIGHT = 24;
static float GET_MIN_SCALE() { return 0.7f; }
static float GET_MAX_SCALE() { return 1.5f; }
static float GET_STEP_SCALE() { return 1.2f; }
Params( int poseCount = POSE_COUNT,
Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
string pcaFilename = string(),
string trainPath = string(), string trainImagesList = string(),
float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(),
float stepScale = GET_STEP_SCALE() );
int poseCount;
Size patchSize;
string pcaFilename;
string trainPath;
string trainImagesList;
float minScale, maxScale, stepScale;
};
OneWayDescriptorMatcher( const Params& params=Params() );
virtual ~OneWayDescriptorMatcher();
void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() );
// Clears keypoints storing in collection and OneWayDescriptorBase
virtual void clear();
virtual void train();
virtual bool isMaskSupported();
virtual void read( const FileNode &fn );
virtual void write( FileStorage& fs ) const;
virtual bool empty() const;
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
// Matches a set of keypoints from a single image of the training set. A rectangle with a center in a keypoint
// and size (patch_width/2*scale, patch_height/2*scale) is cropped from the source image for each
// keypoint. scale is iterated from DescriptorOneWayParams::min_scale to DescriptorOneWayParams::max_scale.
// The minimum distance to each training patch with all its affine poses is found over all scales.
// The class ID of a match is returned for each keypoint. The distance is calculated over PCA components
// loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances.
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult );
Ptr<OneWayDescriptorBase> base;
Params params;
int prevTrainCount;
};
/*
* FernDescriptorMatcher
*/
class FernDescriptorMatcher;
typedef FernDescriptorMatcher FernDescriptorMatch;
class CV_EXPORTS FernDescriptorMatcher : public GenericDescriptorMatcher
{
public:
class CV_EXPORTS Params
{
public:
Params( int nclasses=0,
int patchSize=FernClassifier::PATCH_SIZE,
int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE,
int nstructs=FernClassifier::DEFAULT_STRUCTS,
int structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
int nviews=FernClassifier::DEFAULT_VIEWS,
int compressionMethod=FernClassifier::COMPRESSION_NONE,
const PatchGenerator& patchGenerator=PatchGenerator() );
Params( const string& filename );
int nclasses;
int patchSize;
int signatureSize;
int nstructs;
int structSize;
int nviews;
int compressionMethod;
PatchGenerator patchGenerator;
string filename;
};
FernDescriptorMatcher( const Params& params=Params() );
virtual ~FernDescriptorMatcher();
virtual void clear();
virtual void train();
virtual bool isMaskSupported();
virtual void read( const FileNode &fn );
virtual void write( FileStorage& fs ) const;
virtual bool empty() const;
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult );
void trainFernClassifier();
void calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt,
float& bestProb, int& bestMatchIdx, vector<float>& signature );
Ptr<FernClassifier> classifier;
Params params;
int prevTrainCount;
};
/****************************************************************************************\
* VectorDescriptorMatcher *
\****************************************************************************************/
/*
* A class used for matching descriptors that can be described as vectors in a finite-dimensional space
*/
class VectorDescriptorMatcher;
typedef VectorDescriptorMatcher VectorDescriptorMatch;
class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
{
public:
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
virtual ~VectorDescriptorMatcher();
virtual void add( const vector<Mat>& imgCollection,
vector<vector<KeyPoint> >& pointCollection );
virtual void clear();
virtual void train();
virtual bool isMaskSupported();
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
virtual bool empty() const;
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks, bool compactResult );
virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult );
Ptr<DescriptorExtractor> extractor;
Ptr<DescriptorMatcher> matcher;
};
/****************************************************************************************\
* Drawing functions *
\****************************************************************************************/
struct CV_EXPORTS DrawMatchesFlags
{
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
// i.e. existing memory of output image may be reused.
// Two source image, matches and single keypoints will be drawn.
// For each keypoint only the center point will be drawn (without
// the circle around keypoint with keypoint size and orientation).
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
// Matches will be drawn on existing content of output image.
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
// orientation will be drawn.
};
};
// Draw keypoints.
CV_EXPORTS void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImage,
const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
// Draws matches of keypints from two images on output image.
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
const Mat& img2, const vector<KeyPoint>& keypoints2,
const vector<DMatch>& matches1to2, Mat& outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
const Mat& img2, const vector<KeyPoint>& keypoints2,
const vector<vector<DMatch> >& matches1to2, Mat& outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
/****************************************************************************************\
* Functions to evaluate the feature detectors and [generic] descriptor extractors *
\****************************************************************************************/
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2,
float& repeatability, int& correspCount,
const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
const vector<vector<uchar> >& correctMatches1to2Mask,
vector<Point2f>& recallPrecisionCurve );
CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision );
CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
vector<Point2f>& recallPrecisionCurve,
const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() );
/****************************************************************************************\
* Bag of visual words *
\****************************************************************************************/
/*
* Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
*/
class CV_EXPORTS BOWTrainer
{
public:
BOWTrainer();
virtual ~BOWTrainer();
void add( const Mat& descriptors );
const vector<Mat>& getDescriptors() const;
int descripotorsCount() const;
virtual void clear();
/*
* Train visual words vocabulary, that is cluster training descriptors and
* compute cluster centers.
* Returns cluster centers.
*
* descriptors Training descriptors computed on images keypoints.
*/
virtual Mat cluster() const = 0;
virtual Mat cluster( const Mat& descriptors ) const = 0;
protected:
vector<Mat> descriptors;
int size;
};
/*
* This is BOWTrainer using cv::kmeans to get vocabulary.
*/
class CV_EXPORTS BOWKMeansTrainer : public BOWTrainer
{
public:
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
int attempts=3, int flags=KMEANS_PP_CENTERS );
virtual ~BOWKMeansTrainer();
// Returns trained vocabulary (i.e. cluster centers).
virtual Mat cluster() const;
virtual Mat cluster( const Mat& descriptors ) const;
protected:
int clusterCount;
TermCriteria termcrit;
int attempts;
int flags;
};
/*
* Class to compute image descriptor using bag of visual words.
*/
class CV_EXPORTS BOWImgDescriptorExtractor
{
public:
BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
const Ptr<DescriptorMatcher>& dmatcher );
virtual ~BOWImgDescriptorExtractor();
void setVocabulary( const Mat& vocabulary );
const Mat& getVocabulary() const;
void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
// compute() is not constant because DescriptorMatcher::match is not constant
int descriptorSize() const;
int descriptorType() const;
protected:
Mat vocabulary;
Ptr<DescriptorExtractor> dextractor;
Ptr<DescriptorMatcher> dmatcher;
};
} /* namespace cv */
#endif /* __cplusplus */
#endif
/* End of file. */
|