/usr/include/OGRE/asm_math.h is in libogre-dev 1.7.4-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | #ifndef __asm_math_H__
#define __asm_math_H__
#include "OgrePrerequisites.h"
#if OGRE_COMPILER == OGRE_COMPILER_MSVC
# pragma warning (push)
// disable "instruction may be inaccurate on some Pentiums"
# pragma warning (disable : 4725)
#endif
namespace Ogre
{
/*=============================================================================
ASM math routines posted by davepermen et al on flipcode forums
=============================================================================*/
const float pi = 4.0f * atan( 1.0f );
const float half_pi = 0.5f * pi;
/*=============================================================================
NO EXPLICIT RETURN REQUIRED FROM THESE METHODS!!
=============================================================================*/
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
# pragma warning( push )
# pragma warning( disable: 4035 )
#endif
float asm_arccos( float r ) {
// return half_pi + arctan( r / -sqr( 1.f - r * r ) );
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
float asm_one = 1.f;
float asm_half_pi = half_pi;
__asm {
fld r // r0 = r
fld r // r1 = r0, r0 = r
fmul r // r0 = r0 * r
fsubr asm_one // r0 = r0 - 1.f
fsqrt // r0 = sqrtf( r0 )
fchs // r0 = - r0
fdiv // r0 = r1 / r0
fld1 // {{ r0 = atan( r0 )
fpatan // }}
fadd asm_half_pi // r0 = r0 + pi / 2
} // returns r0
#else
return float( acos( r ) );
#endif
}
float asm_arcsin( float r ) {
// return arctan( r / sqr( 1.f - r * r ) );
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
const float asm_one = 1.f;
__asm {
fld r // r0 = r
fld r // r1 = r0, r0 = r
fmul r // r0 = r0 * r
fsubr asm_one // r0 = r0 - 1.f
fsqrt // r0 = sqrtf( r0 )
fdiv // r0 = r1 / r0
fld1 // {{ r0 = atan( r0 )
fpatan // }}
} // returns r0
#else
return float( asin( r ) );
#endif
}
float asm_arctan( float r ) {
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
__asm {
fld r // r0 = r
fld1 // {{ r0 = atan( r0 )
fpatan // }}
} // returns r0
#else
return float( atan( r ) );
#endif
}
float asm_sin( float r ) {
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
__asm {
fld r // r0 = r
fsin // r0 = sinf( r0 )
} // returns r0
#else
return sin( r );
#endif
}
float asm_cos( float r ) {
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
__asm {
fld r // r0 = r
fcos // r0 = cosf( r0 )
} // returns r0
#else
return cos( r );
#endif
}
float asm_tan( float r ) {
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
// return sin( r ) / cos( r );
__asm {
fld r // r0 = r
fsin // r0 = sinf( r0 )
fld r // r1 = r0, r0 = r
fcos // r0 = cosf( r0 )
fdiv // r0 = r1 / r0
} // returns r0
#else
return tan( r );
#endif
}
// returns a for a * a = r
float asm_sqrt( float r )
{
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
__asm {
fld r // r0 = r
fsqrt // r0 = sqrtf( r0 )
} // returns r0
#else
return sqrt( r );
#endif
}
// returns 1 / a for a * a = r
// -- Use this for Vector normalisation!!!
float asm_rsq( float r )
{
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
__asm {
fld1 // r0 = 1.f
fld r // r1 = r0, r0 = r
fsqrt // r0 = sqrtf( r0 )
fdiv // r0 = r1 / r0
} // returns r0
#else
return 1. / sqrt( r );
#endif
}
// returns 1 / a for a * a = r
// Another version
float apx_rsq( float r ) {
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
const float asm_dot5 = 0.5f;
const float asm_1dot5 = 1.5f;
__asm {
fld r // r0 = r
fmul asm_dot5 // r0 = r0 * .5f
mov eax, r // eax = r
shr eax, 0x1 // eax = eax >> 1
neg eax // eax = -eax
add eax, 0x5F400000 // eax = eax & MAGICAL NUMBER
mov r, eax // r = eax
fmul r // r0 = r0 * r
fmul r // r0 = r0 * r
fsubr asm_1dot5 // r0 = 1.5f - r0
fmul r // r0 = r0 * r
} // returns r0
#else
return 1. / sqrt( r );
#endif
}
/* very MS-specific, commented out for now
Finally the best InvSqrt implementation?
Use for vector normalisation instead of 1/length() * x,y,z
*/
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
__declspec(naked) float __fastcall InvSqrt(float fValue)
{
__asm
{
mov eax, 0be6eb508h
mov dword ptr[esp-12],03fc00000h
sub eax, dword ptr[esp + 4]
sub dword ptr[esp+4], 800000h
shr eax, 1
mov dword ptr[esp - 8], eax
fld dword ptr[esp - 8]
fmul st, st
fld dword ptr[esp - 8]
fxch st(1)
fmul dword ptr[esp + 4]
fld dword ptr[esp - 12]
fld st(0)
fsub st,st(2)
fld st(1)
fxch st(1)
fmul st(3),st
fmul st(3),st
fmulp st(4),st
fsub st,st(2)
fmul st(2),st
fmul st(3),st
fmulp st(2),st
fxch st(1)
fsubp st(1),st
fmulp st(1), st
ret 4
}
}
#endif
// returns a random number
FORCEINLINE float asm_rand()
{
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
#if 0
#if OGRE_COMP_VER >= 1300
static unsigned __int64 q = time( NULL );
_asm {
movq mm0, q
// do the magic MMX thing
pshufw mm1, mm0, 0x1E
paddd mm0, mm1
// move to integer memory location and free MMX
movq q, mm0
emms
}
return float( q );
#endif
#else
// VC6 does not support pshufw
return float( rand() );
#endif
#else
// GCC etc
return float( rand() );
#endif
}
// returns the maximum random number
FORCEINLINE float asm_rand_max()
{
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
#if 0
#if OGRE_COMP_VER >= 1300
return (std::numeric_limits< unsigned __int64 >::max)();
return 9223372036854775807.0f;
#endif
#else
// VC6 does not support unsigned __int64
return float( RAND_MAX );
#endif
#else
// GCC etc
return float( RAND_MAX );
#endif
}
// returns log2( r ) / log2( e )
float asm_ln( float r ) {
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
const float asm_1_div_log2_e = .693147180559f;
const float asm_neg1_div_3 = -.33333333333333333333333333333f;
const float asm_neg2_div_3 = -.66666666666666666666666666667f;
const float asm_2 = 2.f;
int log_2 = 0;
__asm {
// log_2 = ( ( r >> 0x17 ) & 0xFF ) - 0x80;
mov eax, r
sar eax, 0x17
and eax, 0xFF
sub eax, 0x80
mov log_2, eax
// r = ( r & 0x807fffff ) + 0x3f800000;
mov ebx, r
and ebx, 0x807FFFFF
add ebx, 0x3F800000
mov r, ebx
// r = ( asm_neg1_div_3 * r + asm_2 ) * r + asm_neg2_div_3; // (1)
fld r
fmul asm_neg1_div_3
fadd asm_2
fmul r
fadd asm_neg2_div_3
fild log_2
fadd
fmul asm_1_div_log2_e
}
#else
return log( r );
#endif
}
#if OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32
# pragma warning( pop )
#endif
} // namespace
#if OGRE_COMPILER == OGRE_COMPILER_MSVC
# pragma warning (pop)
#endif
#endif
|