This file is indexed.

/usr/include/OGRE/OgreMath.h is in libogre-dev 1.7.4-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2011 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __Math_H__
#define __Math_H__

#include "OgrePrerequisites.h"

namespace Ogre
{
	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Math
	*  @{
	*/
	/** Wrapper class which indicates a given angle value is in Radians.
    @remarks
        Radian values are interchangeable with Degree values, and conversions
        will be done automatically between them.
    */
	class Radian
	{
		Real mRad;

	public:
		explicit Radian ( Real r=0 ) : mRad(r) {}
		Radian ( const Degree& d );
		Radian& operator = ( const Real& f ) { mRad = f; return *this; }
		Radian& operator = ( const Radian& r ) { mRad = r.mRad; return *this; }
		Radian& operator = ( const Degree& d );

		Real valueDegrees() const; // see bottom of this file
		Real valueRadians() const { return mRad; }
		Real valueAngleUnits() const;

        const Radian& operator + () const { return *this; }
		Radian operator + ( const Radian& r ) const { return Radian ( mRad + r.mRad ); }
		Radian operator + ( const Degree& d ) const;
		Radian& operator += ( const Radian& r ) { mRad += r.mRad; return *this; }
		Radian& operator += ( const Degree& d );
		Radian operator - () const { return Radian(-mRad); }
		Radian operator - ( const Radian& r ) const { return Radian ( mRad - r.mRad ); }
		Radian operator - ( const Degree& d ) const;
		Radian& operator -= ( const Radian& r ) { mRad -= r.mRad; return *this; }
		Radian& operator -= ( const Degree& d );
		Radian operator * ( Real f ) const { return Radian ( mRad * f ); }
        Radian operator * ( const Radian& f ) const { return Radian ( mRad * f.mRad ); }
		Radian& operator *= ( Real f ) { mRad *= f; return *this; }
		Radian operator / ( Real f ) const { return Radian ( mRad / f ); }
		Radian& operator /= ( Real f ) { mRad /= f; return *this; }

		bool operator <  ( const Radian& r ) const { return mRad <  r.mRad; }
		bool operator <= ( const Radian& r ) const { return mRad <= r.mRad; }
		bool operator == ( const Radian& r ) const { return mRad == r.mRad; }
		bool operator != ( const Radian& r ) const { return mRad != r.mRad; }
		bool operator >= ( const Radian& r ) const { return mRad >= r.mRad; }
		bool operator >  ( const Radian& r ) const { return mRad >  r.mRad; }

		inline _OgreExport friend std::ostream& operator <<
			( std::ostream& o, const Radian& v )
		{
			o << "Radian(" << v.valueRadians() << ")";
			return o;
		}
	};

    /** Wrapper class which indicates a given angle value is in Degrees.
    @remarks
        Degree values are interchangeable with Radian values, and conversions
        will be done automatically between them.
    */
	class Degree
	{
		Real mDeg; // if you get an error here - make sure to define/typedef 'Real' first

	public:
		explicit Degree ( Real d=0 ) : mDeg(d) {}
		Degree ( const Radian& r ) : mDeg(r.valueDegrees()) {}
		Degree& operator = ( const Real& f ) { mDeg = f; return *this; }
		Degree& operator = ( const Degree& d ) { mDeg = d.mDeg; return *this; }
		Degree& operator = ( const Radian& r ) { mDeg = r.valueDegrees(); return *this; }

		Real valueDegrees() const { return mDeg; }
		Real valueRadians() const; // see bottom of this file
		Real valueAngleUnits() const;

		const Degree& operator + () const { return *this; }
		Degree operator + ( const Degree& d ) const { return Degree ( mDeg + d.mDeg ); }
		Degree operator + ( const Radian& r ) const { return Degree ( mDeg + r.valueDegrees() ); }
		Degree& operator += ( const Degree& d ) { mDeg += d.mDeg; return *this; }
		Degree& operator += ( const Radian& r ) { mDeg += r.valueDegrees(); return *this; }
		Degree operator - () const { return Degree(-mDeg); }
		Degree operator - ( const Degree& d ) const { return Degree ( mDeg - d.mDeg ); }
		Degree operator - ( const Radian& r ) const { return Degree ( mDeg - r.valueDegrees() ); }
		Degree& operator -= ( const Degree& d ) { mDeg -= d.mDeg; return *this; }
		Degree& operator -= ( const Radian& r ) { mDeg -= r.valueDegrees(); return *this; }
		Degree operator * ( Real f ) const { return Degree ( mDeg * f ); }
        Degree operator * ( const Degree& f ) const { return Degree ( mDeg * f.mDeg ); }
		Degree& operator *= ( Real f ) { mDeg *= f; return *this; }
		Degree operator / ( Real f ) const { return Degree ( mDeg / f ); }
		Degree& operator /= ( Real f ) { mDeg /= f; return *this; }

		bool operator <  ( const Degree& d ) const { return mDeg <  d.mDeg; }
		bool operator <= ( const Degree& d ) const { return mDeg <= d.mDeg; }
		bool operator == ( const Degree& d ) const { return mDeg == d.mDeg; }
		bool operator != ( const Degree& d ) const { return mDeg != d.mDeg; }
		bool operator >= ( const Degree& d ) const { return mDeg >= d.mDeg; }
		bool operator >  ( const Degree& d ) const { return mDeg >  d.mDeg; }

		inline _OgreExport friend std::ostream& operator <<
			( std::ostream& o, const Degree& v )
		{
			o << "Degree(" << v.valueDegrees() << ")";
			return o;
		}
	};

    /** Wrapper class which identifies a value as the currently default angle 
        type, as defined by Math::setAngleUnit.
    @remarks
        Angle values will be automatically converted between radians and degrees,
        as appropriate.
    */
	class Angle
	{
		Real mAngle;
	public:
		explicit Angle ( Real angle ) : mAngle(angle) {}
		operator Radian() const;
		operator Degree() const;
	};

	// these functions could not be defined within the class definition of class
	// Radian because they required class Degree to be defined
	inline Radian::Radian ( const Degree& d ) : mRad(d.valueRadians()) {
	}
	inline Radian& Radian::operator = ( const Degree& d ) {
		mRad = d.valueRadians(); return *this;
	}
	inline Radian Radian::operator + ( const Degree& d ) const {
		return Radian ( mRad + d.valueRadians() );
	}
	inline Radian& Radian::operator += ( const Degree& d ) {
		mRad += d.valueRadians();
		return *this;
	}
	inline Radian Radian::operator - ( const Degree& d ) const {
		return Radian ( mRad - d.valueRadians() );
	}
	inline Radian& Radian::operator -= ( const Degree& d ) {
		mRad -= d.valueRadians();
		return *this;
	}

    /** Class to provide access to common mathematical functions.
        @remarks
            Most of the maths functions are aliased versions of the C runtime
            library functions. They are aliased here to provide future
            optimisation opportunities, either from faster RTLs or custom
            math approximations.
        @note
            <br>This is based on MgcMath.h from
            <a href="http://www.geometrictools.com/">Wild Magic</a>.
    */
    class _OgreExport Math 
    {
   public:
       /** The angular units used by the API. This functionality is now deprecated in favor
	       of discreet angular unit types ( see Degree and Radian above ). The only place
		   this functionality is actually still used is when parsing files. Search for
		   usage of the Angle class for those instances
       */
       enum AngleUnit
       {
           AU_DEGREE,
           AU_RADIAN
       };

    protected:
       // angle units used by the api
       static AngleUnit msAngleUnit;

        /// Size of the trig tables as determined by constructor.
        static int mTrigTableSize;

        /// Radian -> index factor value ( mTrigTableSize / 2 * PI )
        static Real mTrigTableFactor;
        static Real* mSinTable;
        static Real* mTanTable;

        /** Private function to build trig tables.
        */
        void buildTrigTables();

		static Real SinTable (Real fValue);
		static Real TanTable (Real fValue);
    public:
        /** Default constructor.
            @param
                trigTableSize Optional parameter to set the size of the
                tables used to implement Sin, Cos, Tan
        */
        Math(unsigned int trigTableSize = 4096);

        /** Default destructor.
        */
        ~Math();

		static inline int IAbs (int iValue) { return ( iValue >= 0 ? iValue : -iValue ); }
		static inline int ICeil (float fValue) { return int(ceil(fValue)); }
		static inline int IFloor (float fValue) { return int(floor(fValue)); }
        static int ISign (int iValue);

		static inline Real Abs (Real fValue) { return Real(fabs(fValue)); }
		static inline Degree Abs (const Degree& dValue) { return Degree(fabs(dValue.valueDegrees())); }
		static inline Radian Abs (const Radian& rValue) { return Radian(fabs(rValue.valueRadians())); }
		static Radian ACos (Real fValue);
		static Radian ASin (Real fValue);
		static inline Radian ATan (Real fValue) { return Radian(atan(fValue)); }
		static inline Radian ATan2 (Real fY, Real fX) { return Radian(atan2(fY,fX)); }
		static inline Real Ceil (Real fValue) { return Real(ceil(fValue)); }
		static inline bool isNaN(Real f)
		{
			// std::isnan() is C99, not supported by all compilers
			// However NaN always fails this next test, no other number does.
			return f != f;
		}

        /** Cosine function.
            @param
                fValue Angle in radians
            @param
                useTables If true, uses lookup tables rather than
                calculation - faster but less accurate.
        */
        static inline Real Cos (const Radian& fValue, bool useTables = false) {
			return (!useTables) ? Real(cos(fValue.valueRadians())) : SinTable(fValue.valueRadians() + HALF_PI);
		}
        /** Cosine function.
            @param
                fValue Angle in radians
            @param
                useTables If true, uses lookup tables rather than
                calculation - faster but less accurate.
        */
        static inline Real Cos (Real fValue, bool useTables = false) {
			return (!useTables) ? Real(cos(fValue)) : SinTable(fValue + HALF_PI);
		}

		static inline Real Exp (Real fValue) { return Real(exp(fValue)); }

		static inline Real Floor (Real fValue) { return Real(floor(fValue)); }

		static inline Real Log (Real fValue) { return Real(log(fValue)); }

		/// Stored value of log(2) for frequent use
		static const Real LOG2;

		static inline Real Log2 (Real fValue) { return Real(log(fValue)/LOG2); }

		static inline Real LogN (Real base, Real fValue) { return Real(log(fValue)/log(base)); }

		static inline Real Pow (Real fBase, Real fExponent) { return Real(pow(fBase,fExponent)); }

        static Real Sign (Real fValue);
		static inline Radian Sign ( const Radian& rValue )
		{
			return Radian(Sign(rValue.valueRadians()));
		}
		static inline Degree Sign ( const Degree& dValue )
		{
			return Degree(Sign(dValue.valueDegrees()));
		}

        /** Sine function.
            @param
                fValue Angle in radians
            @param
                useTables If true, uses lookup tables rather than
                calculation - faster but less accurate.
        */
        static inline Real Sin (const Radian& fValue, bool useTables = false) {
			return (!useTables) ? Real(sin(fValue.valueRadians())) : SinTable(fValue.valueRadians());
		}
        /** Sine function.
            @param
                fValue Angle in radians
            @param
                useTables If true, uses lookup tables rather than
                calculation - faster but less accurate.
        */
        static inline Real Sin (Real fValue, bool useTables = false) {
			return (!useTables) ? Real(sin(fValue)) : SinTable(fValue);
		}

		static inline Real Sqr (Real fValue) { return fValue*fValue; }

		static inline Real Sqrt (Real fValue) { return Real(sqrt(fValue)); }

        static inline Radian Sqrt (const Radian& fValue) { return Radian(sqrt(fValue.valueRadians())); }

        static inline Degree Sqrt (const Degree& fValue) { return Degree(sqrt(fValue.valueDegrees())); }

        /** Inverse square root i.e. 1 / Sqrt(x), good for vector
            normalisation.
        */
		static Real InvSqrt(Real fValue);

        static Real UnitRandom ();  // in [0,1]

        static Real RangeRandom (Real fLow, Real fHigh);  // in [fLow,fHigh]

        static Real SymmetricRandom ();  // in [-1,1]

        /** Tangent function.
            @param
                fValue Angle in radians
            @param
                useTables If true, uses lookup tables rather than
                calculation - faster but less accurate.
        */
		static inline Real Tan (const Radian& fValue, bool useTables = false) {
			return (!useTables) ? Real(tan(fValue.valueRadians())) : TanTable(fValue.valueRadians());
		}
        /** Tangent function.
            @param
                fValue Angle in radians
            @param
                useTables If true, uses lookup tables rather than
                calculation - faster but less accurate.
        */
		static inline Real Tan (Real fValue, bool useTables = false) {
			return (!useTables) ? Real(tan(fValue)) : TanTable(fValue);
		}

		static inline Real DegreesToRadians(Real degrees) { return degrees * fDeg2Rad; }
        static inline Real RadiansToDegrees(Real radians) { return radians * fRad2Deg; }

       /** These functions used to set the assumed angle units (radians or degrees) 
            expected when using the Angle type.
       @par
            You can set this directly after creating a new Root, and also before/after resource creation,
            depending on whether you want the change to affect resource files.
       */
       static void setAngleUnit(AngleUnit unit);
       /** Get the unit being used for angles. */
       static AngleUnit getAngleUnit(void);

       /** Convert from the current AngleUnit to radians. */
       static Real AngleUnitsToRadians(Real units);
       /** Convert from radians to the current AngleUnit . */
       static Real RadiansToAngleUnits(Real radians);
       /** Convert from the current AngleUnit to degrees. */
       static Real AngleUnitsToDegrees(Real units);
       /** Convert from degrees to the current AngleUnit. */
       static Real DegreesToAngleUnits(Real degrees);

       /** Checks whether a given point is inside a triangle, in a
            2-dimensional (Cartesian) space.
            @remarks
                The vertices of the triangle must be given in either
                trigonometrical (anticlockwise) or inverse trigonometrical
                (clockwise) order.
            @param
                p The point.
            @param
                a The triangle's first vertex.
            @param
                b The triangle's second vertex.
            @param
                c The triangle's third vertex.
            @returns
                If the point resides in the triangle, <b>true</b> is
                returned.
            @par
                If the point is outside the triangle, <b>false</b> is
                returned.
        */
        static bool pointInTri2D(const Vector2& p, const Vector2& a, 
			const Vector2& b, const Vector2& c);

       /** Checks whether a given 3D point is inside a triangle.
       @remarks
            The vertices of the triangle must be given in either
            trigonometrical (anticlockwise) or inverse trigonometrical
            (clockwise) order, and the point must be guaranteed to be in the
			same plane as the triangle
        @param
            p The point.
        @param
            a The triangle's first vertex.
        @param
            b The triangle's second vertex.
        @param
            c The triangle's third vertex.
		@param 
			normal The triangle plane's normal (passed in rather than calculated
				on demand since the caller may already have it)
        @returns
            If the point resides in the triangle, <b>true</b> is
            returned.
        @par
            If the point is outside the triangle, <b>false</b> is
            returned.
        */
        static bool pointInTri3D(const Vector3& p, const Vector3& a, 
			const Vector3& b, const Vector3& c, const Vector3& normal);
        /** Ray / plane intersection, returns boolean result and distance. */
        static std::pair<bool, Real> intersects(const Ray& ray, const Plane& plane);

        /** Ray / sphere intersection, returns boolean result and distance. */
        static std::pair<bool, Real> intersects(const Ray& ray, const Sphere& sphere, 
            bool discardInside = true);
        
        /** Ray / box intersection, returns boolean result and distance. */
        static std::pair<bool, Real> intersects(const Ray& ray, const AxisAlignedBox& box);

        /** Ray / box intersection, returns boolean result and two intersection distance.
        @param
            ray The ray.
        @param
            box The box.
        @param
            d1 A real pointer to retrieve the near intersection distance
                from the ray origin, maybe <b>null</b> which means don't care
                about the near intersection distance.
        @param
            d2 A real pointer to retrieve the far intersection distance
                from the ray origin, maybe <b>null</b> which means don't care
                about the far intersection distance.
        @returns
            If the ray is intersects the box, <b>true</b> is returned, and
            the near intersection distance is return by <i>d1</i>, the
            far intersection distance is return by <i>d2</i>. Guarantee
            <b>0</b> <= <i>d1</i> <= <i>d2</i>.
        @par
            If the ray isn't intersects the box, <b>false</b> is returned, and
            <i>d1</i> and <i>d2</i> is unmodified.
        */
        static bool intersects(const Ray& ray, const AxisAlignedBox& box,
            Real* d1, Real* d2);

        /** Ray / triangle intersection, returns boolean result and distance.
        @param
            ray The ray.
        @param
            a The triangle's first vertex.
        @param
            b The triangle's second vertex.
        @param
            c The triangle's third vertex.
		@param 
			normal The triangle plane's normal (passed in rather than calculated
				on demand since the caller may already have it), doesn't need
                normalised since we don't care.
        @param
            positiveSide Intersect with "positive side" of the triangle
        @param
            negativeSide Intersect with "negative side" of the triangle
        @returns
            If the ray is intersects the triangle, a pair of <b>true</b> and the
            distance between intersection point and ray origin returned.
        @par
            If the ray isn't intersects the triangle, a pair of <b>false</b> and
            <b>0</b> returned.
        */
        static std::pair<bool, Real> intersects(const Ray& ray, const Vector3& a,
            const Vector3& b, const Vector3& c, const Vector3& normal,
            bool positiveSide = true, bool negativeSide = true);

        /** Ray / triangle intersection, returns boolean result and distance.
        @param
            ray The ray.
        @param
            a The triangle's first vertex.
        @param
            b The triangle's second vertex.
        @param
            c The triangle's third vertex.
        @param
            positiveSide Intersect with "positive side" of the triangle
        @param
            negativeSide Intersect with "negative side" of the triangle
        @returns
            If the ray is intersects the triangle, a pair of <b>true</b> and the
            distance between intersection point and ray origin returned.
        @par
            If the ray isn't intersects the triangle, a pair of <b>false</b> and
            <b>0</b> returned.
        */
        static std::pair<bool, Real> intersects(const Ray& ray, const Vector3& a,
            const Vector3& b, const Vector3& c,
            bool positiveSide = true, bool negativeSide = true);

        /** Sphere / box intersection test. */
        static bool intersects(const Sphere& sphere, const AxisAlignedBox& box);

        /** Plane / box intersection test. */
        static bool intersects(const Plane& plane, const AxisAlignedBox& box);

        /** Ray / convex plane list intersection test. 
        @param ray The ray to test with
        @param plaeList List of planes which form a convex volume
        @param normalIsOutside Does the normal point outside the volume
        */
        static std::pair<bool, Real> intersects(
            const Ray& ray, const vector<Plane>::type& planeList, 
            bool normalIsOutside);
        /** Ray / convex plane list intersection test. 
        @param ray The ray to test with
        @param plaeList List of planes which form a convex volume
        @param normalIsOutside Does the normal point outside the volume
        */
        static std::pair<bool, Real> intersects(
            const Ray& ray, const list<Plane>::type& planeList, 
            bool normalIsOutside);

        /** Sphere / plane intersection test. 
        @remarks NB just do a plane.getDistance(sphere.getCenter()) for more detail!
        */
        static bool intersects(const Sphere& sphere, const Plane& plane);

        /** Compare 2 reals, using tolerance for inaccuracies.
        */
        static bool RealEqual(Real a, Real b,
            Real tolerance = std::numeric_limits<Real>::epsilon());

        /** Calculates the tangent space vector for a given set of positions / texture coords. */
        static Vector3 calculateTangentSpaceVector(
            const Vector3& position1, const Vector3& position2, const Vector3& position3,
            Real u1, Real v1, Real u2, Real v2, Real u3, Real v3);

        /** Build a reflection matrix for the passed in plane. */
        static Matrix4 buildReflectionMatrix(const Plane& p);
        /** Calculate a face normal, including the w component which is the offset from the origin. */
        static Vector4 calculateFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3);
        /** Calculate a face normal, no w-information. */
        static Vector3 calculateBasicFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3);
        /** Calculate a face normal without normalize, including the w component which is the offset from the origin. */
        static Vector4 calculateFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3);
        /** Calculate a face normal without normalize, no w-information. */
        static Vector3 calculateBasicFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3);

		/** Generates a value based on the Gaussian (normal) distribution function
			with the given offset and scale parameters.
		*/
		static Real gaussianDistribution(Real x, Real offset = 0.0f, Real scale = 1.0f);

		/** Clamp a value within an inclusive range. */
		template <typename T>
		static T Clamp(T val, T minval, T maxval)
		{
			assert (minval < maxval && "Invalid clamp range");
			return std::max(std::min(val, maxval), minval);
		}

		static Matrix4 makeViewMatrix(const Vector3& position, const Quaternion& orientation, 
			const Matrix4* reflectMatrix = 0);

		/** Get a bounding radius value from a bounding box. */
		static Real boundingRadiusFromAABB(const AxisAlignedBox& aabb);



        static const Real POS_INFINITY;
        static const Real NEG_INFINITY;
        static const Real PI;
        static const Real TWO_PI;
        static const Real HALF_PI;
		static const Real fDeg2Rad;
		static const Real fRad2Deg;

    };

	// these functions must be defined down here, because they rely on the
	// angle unit conversion functions in class Math:

	inline Real Radian::valueDegrees() const
	{
		return Math::RadiansToDegrees ( mRad );
	}

	inline Real Radian::valueAngleUnits() const
	{
		return Math::RadiansToAngleUnits ( mRad );
	}

	inline Real Degree::valueRadians() const
	{
		return Math::DegreesToRadians ( mDeg );
	}

	inline Real Degree::valueAngleUnits() const
	{
		return Math::DegreesToAngleUnits ( mDeg );
	}

	inline Angle::operator Radian() const
	{
		return Radian(Math::AngleUnitsToRadians(mAngle));
	}

	inline Angle::operator Degree() const
	{
		return Degree(Math::AngleUnitsToDegrees(mAngle));
	}

	inline Radian operator * ( Real a, const Radian& b )
	{
		return Radian ( a * b.valueRadians() );
	}

	inline Radian operator / ( Real a, const Radian& b )
	{
		return Radian ( a / b.valueRadians() );
	}

	inline Degree operator * ( Real a, const Degree& b )
	{
		return Degree ( a * b.valueDegrees() );
	}

	inline Degree operator / ( Real a, const Degree& b )
	{
		return Degree ( a / b.valueDegrees() );
	}
	/** @} */
	/** @} */

}
#endif