/usr/include/OGRE/OgreCommon.h is in libogre-dev 1.7.4-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2011 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __Common_H__
#define __Common_H__
// Common stuff
#include "OgreString.h"
#if defined ( OGRE_GCC_VISIBILITY )
# pragma GCC visibility push(default)
#endif
#include <utility>
#include <sstream>
#if defined ( OGRE_GCC_VISIBILITY )
# pragma GCC visibility pop
#endif
namespace Ogre {
/** \addtogroup Core
* @{
*/
/** \addtogroup General
* @{
*/
/// Fast general hashing algorithm
uint32 _OgreExport FastHash (const char * data, int len, uint32 hashSoFar = 0);
/// Combine hashes with same style as boost::hash_combine
template <typename T>
uint32 HashCombine (uint32 hashSoFar, const T& data)
{
return FastHash((const char*)&data, sizeof(T), hashSoFar);
}
/** Comparison functions used for the depth/stencil buffer operations and
others. */
enum CompareFunction
{
CMPF_ALWAYS_FAIL,
CMPF_ALWAYS_PASS,
CMPF_LESS,
CMPF_LESS_EQUAL,
CMPF_EQUAL,
CMPF_NOT_EQUAL,
CMPF_GREATER_EQUAL,
CMPF_GREATER
};
/** High-level filtering options providing shortcuts to settings the
minification, magnification and mip filters. */
enum TextureFilterOptions
{
/// Equal to: min=FO_POINT, mag=FO_POINT, mip=FO_NONE
TFO_NONE,
/// Equal to: min=FO_LINEAR, mag=FO_LINEAR, mip=FO_POINT
TFO_BILINEAR,
/// Equal to: min=FO_LINEAR, mag=FO_LINEAR, mip=FO_LINEAR
TFO_TRILINEAR,
/// Equal to: min=FO_ANISOTROPIC, max=FO_ANISOTROPIC, mip=FO_LINEAR
TFO_ANISOTROPIC
};
enum FilterType
{
/// The filter used when shrinking a texture
FT_MIN,
/// The filter used when magnifying a texture
FT_MAG,
/// The filter used when determining the mipmap
FT_MIP
};
/** Filtering options for textures / mipmaps. */
enum FilterOptions
{
/// No filtering, used for FILT_MIP to turn off mipmapping
FO_NONE,
/// Use the closest pixel
FO_POINT,
/// Average of a 2x2 pixel area, denotes bilinear for MIN and MAG, trilinear for MIP
FO_LINEAR,
/// Similar to FO_LINEAR, but compensates for the angle of the texture plane
FO_ANISOTROPIC
};
/** Light shading modes. */
enum ShadeOptions
{
SO_FLAT,
SO_GOURAUD,
SO_PHONG
};
/** Fog modes. */
enum FogMode
{
/// No fog. Duh.
FOG_NONE,
/// Fog density increases exponentially from the camera (fog = 1/e^(distance * density))
FOG_EXP,
/// Fog density increases at the square of FOG_EXP, i.e. even quicker (fog = 1/e^(distance * density)^2)
FOG_EXP2,
/// Fog density increases linearly between the start and end distances
FOG_LINEAR
};
/** Hardware culling modes based on vertex winding.
This setting applies to how the hardware API culls triangles it is sent. */
enum CullingMode
{
/// Hardware never culls triangles and renders everything it receives.
CULL_NONE = 1,
/// Hardware culls triangles whose vertices are listed clockwise in the view (default).
CULL_CLOCKWISE = 2,
/// Hardware culls triangles whose vertices are listed anticlockwise in the view.
CULL_ANTICLOCKWISE = 3
};
/** Manual culling modes based on vertex normals.
This setting applies to how the software culls triangles before sending them to the
hardware API. This culling mode is used by scene managers which choose to implement it -
normally those which deal with large amounts of fixed world geometry which is often
planar (software culling movable variable geometry is expensive). */
enum ManualCullingMode
{
/// No culling so everything is sent to the hardware.
MANUAL_CULL_NONE = 1,
/// Cull triangles whose normal is pointing away from the camera (default).
MANUAL_CULL_BACK = 2,
/// Cull triangles whose normal is pointing towards the camera.
MANUAL_CULL_FRONT = 3
};
/** Enumerates the wave types usable with the Ogre engine. */
enum WaveformType
{
/// Standard sine wave which smoothly changes from low to high and back again.
WFT_SINE,
/// An angular wave with a constant increase / decrease speed with pointed peaks.
WFT_TRIANGLE,
/// Half of the time is spent at the min, half at the max with instant transition between.
WFT_SQUARE,
/// Gradual steady increase from min to max over the period with an instant return to min at the end.
WFT_SAWTOOTH,
/// Gradual steady decrease from max to min over the period, with an instant return to max at the end.
WFT_INVERSE_SAWTOOTH,
/// Pulse Width Modulation. Works like WFT_SQUARE, except the high to low transition is controlled by duty cycle.
/// With a duty cycle of 50% (0.5) will give the same output as WFT_SQUARE.
WFT_PWM
};
/** The polygon mode to use when rasterising. */
enum PolygonMode
{
/// Only points are rendered.
PM_POINTS = 1,
/// Wireframe models are rendered.
PM_WIREFRAME = 2,
/// Solid polygons are rendered.
PM_SOLID = 3
};
/** An enumeration of broad shadow techniques */
enum ShadowTechnique
{
/** No shadows */
SHADOWTYPE_NONE = 0x00,
/** Mask for additive shadows (not for direct use, use SHADOWTYPE_ enum instead)
*/
SHADOWDETAILTYPE_ADDITIVE = 0x01,
/** Mask for modulative shadows (not for direct use, use SHADOWTYPE_ enum instead)
*/
SHADOWDETAILTYPE_MODULATIVE = 0x02,
/** Mask for integrated shadows (not for direct use, use SHADOWTYPE_ enum instead)
*/
SHADOWDETAILTYPE_INTEGRATED = 0x04,
/** Mask for stencil shadows (not for direct use, use SHADOWTYPE_ enum instead)
*/
SHADOWDETAILTYPE_STENCIL = 0x10,
/** Mask for texture shadows (not for direct use, use SHADOWTYPE_ enum instead)
*/
SHADOWDETAILTYPE_TEXTURE = 0x20,
/** Stencil shadow technique which renders all shadow volumes as
a modulation after all the non-transparent areas have been
rendered. This technique is considerably less fillrate intensive
than the additive stencil shadow approach when there are multiple
lights, but is not an accurate model.
*/
SHADOWTYPE_STENCIL_MODULATIVE = 0x12,
/** Stencil shadow technique which renders each light as a separate
additive pass to the scene. This technique can be very fillrate
intensive because it requires at least 2 passes of the entire
scene, more if there are multiple lights. However, it is a more
accurate model than the modulative stencil approach and this is
especially apparent when using coloured lights or bump mapping.
*/
SHADOWTYPE_STENCIL_ADDITIVE = 0x11,
/** Texture-based shadow technique which involves a monochrome render-to-texture
of the shadow caster and a projection of that texture onto the
shadow receivers as a modulative pass.
*/
SHADOWTYPE_TEXTURE_MODULATIVE = 0x22,
/** Texture-based shadow technique which involves a render-to-texture
of the shadow caster and a projection of that texture onto the
shadow receivers, built up per light as additive passes.
This technique can be very fillrate intensive because it requires numLights + 2
passes of the entire scene. However, it is a more accurate model than the
modulative approach and this is especially apparent when using coloured lights
or bump mapping.
*/
SHADOWTYPE_TEXTURE_ADDITIVE = 0x21,
/** Texture-based shadow technique which involves a render-to-texture
of the shadow caster and a projection of that texture on to the shadow
receivers, with the usage of those shadow textures completely controlled
by the materials of the receivers.
This technique is easily the most flexible of all techniques because
the material author is in complete control over how the shadows are
combined with regular rendering. It can perform shadows as accurately
as SHADOWTYPE_TEXTURE_ADDITIVE but more efficiently because it requires
less passes. However it also requires more expertise to use, and
in almost all cases, shader capable hardware to really use to the full.
@note The 'additive' part of this mode means that the colour of
the rendered shadow texture is by default plain black. It does
not mean it does the adding on your receivers automatically though, how you
use that result is up to you.
*/
SHADOWTYPE_TEXTURE_ADDITIVE_INTEGRATED = 0x25,
/** Texture-based shadow technique which involves a render-to-texture
of the shadow caster and a projection of that texture on to the shadow
receivers, with the usage of those shadow textures completely controlled
by the materials of the receivers.
This technique is easily the most flexible of all techniques because
the material author is in complete control over how the shadows are
combined with regular rendering. It can perform shadows as accurately
as SHADOWTYPE_TEXTURE_ADDITIVE but more efficiently because it requires
less passes. However it also requires more expertise to use, and
in almost all cases, shader capable hardware to really use to the full.
@note The 'modulative' part of this mode means that the colour of
the rendered shadow texture is by default the 'shadow colour'. It does
not mean it modulates on your receivers automatically though, how you
use that result is up to you.
*/
SHADOWTYPE_TEXTURE_MODULATIVE_INTEGRATED = 0x26
};
/** An enumeration describing which material properties should track the vertex colours */
typedef int TrackVertexColourType;
enum TrackVertexColourEnum {
TVC_NONE = 0x0,
TVC_AMBIENT = 0x1,
TVC_DIFFUSE = 0x2,
TVC_SPECULAR = 0x4,
TVC_EMISSIVE = 0x8
};
/** Sort mode for billboard-set and particle-system */
enum SortMode
{
/** Sort by direction of the camera */
SM_DIRECTION,
/** Sort by distance from the camera */
SM_DISTANCE
};
/** Defines the frame buffer types. */
enum FrameBufferType {
FBT_COLOUR = 0x1,
FBT_DEPTH = 0x2,
FBT_STENCIL = 0x4
};
/** A hashed vector.
*/
template <typename T>
class HashedVector
{
public:
typedef std::vector<T, STLAllocator<T, GeneralAllocPolicy> > VectorImpl;
protected:
VectorImpl mList;
mutable uint32 mListHash;
mutable bool mListHashDirty;
void addToHash(const T& newPtr) const
{
mListHash = FastHash((const char*)&newPtr, sizeof(T), mListHash);
}
void recalcHash() const
{
mListHash = 0;
for (const_iterator i = mList.begin(); i != mList.end(); ++i)
addToHash(*i);
mListHashDirty = false;
}
public:
typedef typename VectorImpl::value_type value_type;
typedef typename VectorImpl::pointer pointer;
typedef typename VectorImpl::reference reference;
typedef typename VectorImpl::const_reference const_reference;
typedef typename VectorImpl::size_type size_type;
typedef typename VectorImpl::difference_type difference_type;
typedef typename VectorImpl::iterator iterator;
typedef typename VectorImpl::const_iterator const_iterator;
typedef typename VectorImpl::reverse_iterator reverse_iterator;
typedef typename VectorImpl::const_reverse_iterator const_reverse_iterator;
void dirtyHash()
{
mListHashDirty = true;
}
bool isHashDirty() const
{
return mListHashDirty;
}
iterator begin()
{
// we have to assume that hash needs recalculating on non-const
dirtyHash();
return mList.begin();
}
iterator end() { return mList.end(); }
const_iterator begin() const { return mList.begin(); }
const_iterator end() const { return mList.end(); }
reverse_iterator rbegin()
{
// we have to assume that hash needs recalculating on non-const
dirtyHash();
return mList.rbegin();
}
reverse_iterator rend() { return mList.rend(); }
const_reverse_iterator rbegin() const { return mList.rbegin(); }
const_reverse_iterator rend() const { return mList.rend(); }
size_type size() const { return mList.size(); }
size_type max_size() const { return mList.max_size(); }
size_type capacity() const { return mList.capacity(); }
bool empty() const { return mList.empty(); }
reference operator[](size_type n)
{
// we have to assume that hash needs recalculating on non-const
dirtyHash();
return mList[n];
}
const_reference operator[](size_type n) const { return mList[n]; }
reference at(size_type n)
{
// we have to assume that hash needs recalculating on non-const
dirtyHash();
return mList.const_iterator(n);
}
const_reference at(size_type n) const { return mList.at(n); }
HashedVector() : mListHash(0), mListHashDirty(false) {}
HashedVector(size_type n) : mList(n), mListHash(0), mListHashDirty(n > 0) {}
HashedVector(size_type n, const T& t) : mList(n, t), mListHash(0), mListHashDirty(n > 0) {}
HashedVector(const HashedVector<T>& rhs)
: mList(rhs.mList), mListHash(rhs.mListHash), mListHashDirty(rhs.mListHashDirty) {}
template <class InputIterator>
HashedVector(InputIterator a, InputIterator b)
: mList(a, b), mListHashDirty(false)
{
dirtyHash();
}
~HashedVector() {}
HashedVector<T>& operator=(const HashedVector<T>& rhs)
{
mList = rhs.mList;
mListHash = rhs.mListHash;
mListHashDirty = rhs.mListHashDirty;
return *this;
}
void reserve(size_t t) { mList.reserve(t); }
reference front()
{
// we have to assume that hash needs recalculating on non-const
dirtyHash();
return mList.front();
}
const_reference front() const { return mList.front(); }
reference back()
{
// we have to assume that hash needs recalculating on non-const
dirtyHash();
return mList.back();
}
const_reference back() const { return mList.back(); }
void push_back(const T& t)
{
mList.push_back(t);
// Quick progressive hash add
if (!isHashDirty())
addToHash(t);
}
void pop_back()
{
mList.pop_back();
dirtyHash();
}
void swap(HashedVector<T>& rhs)
{
mList.swap(rhs.mList);
dirtyHash();
}
iterator insert(iterator pos, const T& t)
{
bool recalc = (pos != end());
iterator ret = mList.insert(pos, t);
if (recalc)
dirtyHash();
else
addToHash(t);
return ret;
}
template <class InputIterator>
void insert(iterator pos,
InputIterator f, InputIterator l)
{
mList.insert(pos, f, l);
dirtyHash();
}
void insert(iterator pos, size_type n, const T& x)
{
mList.insert(pos, n, x);
dirtyHash();
}
iterator erase(iterator pos)
{
iterator ret = mList.erase(pos);
dirtyHash();
return ret;
}
iterator erase(iterator first, iterator last)
{
iterator ret = mList.erase(first, last);
dirtyHash();
return ret;
}
void clear()
{
mList.clear();
mListHash = 0;
mListHashDirty = false;
}
void resize(size_type n, const T& t = T())
{
bool recalc = false;
if (n != size())
recalc = true;
mList.resize(n, t);
if (recalc)
dirtyHash();
}
bool operator==(const HashedVector<T>& b)
{ return mListHash == b.mListHash; }
bool operator<(const HashedVector<T>& b)
{ return mListHash < b.mListHash; }
/// Get the hash value
uint32 getHash() const
{
if (isHashDirty())
recalcHash();
return mListHash;
}
public:
};
class Light;
typedef HashedVector<Light*> LightList;
typedef map<String, bool>::type UnaryOptionList;
typedef map<String, String>::type BinaryOptionList;
/// Name / value parameter pair (first = name, second = value)
typedef map<String, String>::type NameValuePairList;
/// Alias / Texture name pair (first = alias, second = texture name)
typedef map<String, String>::type AliasTextureNamePairList;
template< typename T > struct TRect
{
T left, top, right, bottom;
TRect() : left(0), top(0), right(0), bottom(0) {}
TRect( T const & l, T const & t, T const & r, T const & b )
: left( l ), top( t ), right( r ), bottom( b )
{
}
TRect( TRect const & o )
: left( o.left ), top( o.top ), right( o.right ), bottom( o.bottom )
{
}
TRect & operator=( TRect const & o )
{
left = o.left;
top = o.top;
right = o.right;
bottom = o.bottom;
return *this;
}
T width() const
{
return right - left;
}
T height() const
{
return bottom - top;
}
bool isNull() const
{
return width() == 0 || height() == 0;
}
void setNull()
{
left = right = top = bottom = 0;
}
TRect & merge(const TRect& rhs)
{
if (isNull())
{
*this = rhs;
}
else if (!rhs.isNull())
{
left = std::min(left, rhs.left);
right = std::max(right, rhs.right);
top = std::min(top, rhs.top);
bottom = std::max(bottom, rhs.bottom);
}
return *this;
}
TRect intersect(const TRect& rhs) const
{
TRect ret;
if (isNull() || rhs.isNull())
{
// empty
return ret;
}
else
{
ret.left = std::max(left, rhs.left);
ret.right = std::min(right, rhs.right);
ret.top = std::max(top, rhs.top);
ret.bottom = std::min(bottom, rhs.bottom);
}
if (ret.left > ret.right || ret.top > ret.bottom)
{
// no intersection, return empty
ret.left = ret.top = ret.right = ret.bottom = 0;
}
return ret;
}
};
template<typename T>
std::ostream& operator<<(std::ostream& o, const TRect<T>& r)
{
o << "TRect<>(l:" << r.left << ", t:" << r.top << ", r:" << r.right << ", b:" << r.bottom << ")";
return o;
}
/** Structure used to define a rectangle in a 2-D floating point space.
*/
typedef TRect<float> FloatRect;
/** Structure used to define a rectangle in a 2-D floating point space,
subject to double / single floating point settings.
*/
typedef TRect<Real> RealRect;
/** Structure used to define a rectangle in a 2-D integer space.
*/
typedef TRect< long > Rect;
/** Structure used to define a box in a 3-D integer space.
Note that the left, top, and front edges are included but the right,
bottom and back ones are not.
*/
struct Box
{
size_t left, top, right, bottom, front, back;
/// Parameterless constructor for setting the members manually
Box()
: left(0), top(0), right(1), bottom(1), front(0), back(1)
{
}
/** Define a box from left, top, right and bottom coordinates
This box will have depth one (front=0 and back=1).
@param l x value of left edge
@param t y value of top edge
@param r x value of right edge
@param b y value of bottom edge
@note Note that the left, top, and front edges are included
but the right, bottom and back ones are not.
*/
Box( size_t l, size_t t, size_t r, size_t b ):
left(l),
top(t),
right(r),
bottom(b),
front(0),
back(1)
{
assert(right >= left && bottom >= top && back >= front);
}
/** Define a box from left, top, front, right, bottom and back
coordinates.
@param l x value of left edge
@param t y value of top edge
@param ff z value of front edge
@param r x value of right edge
@param b y value of bottom edge
@param bb z value of back edge
@note Note that the left, top, and front edges are included
but the right, bottom and back ones are not.
*/
Box( size_t l, size_t t, size_t ff, size_t r, size_t b, size_t bb ):
left(l),
top(t),
right(r),
bottom(b),
front(ff),
back(bb)
{
assert(right >= left && bottom >= top && back >= front);
}
/// Return true if the other box is a part of this one
bool contains(const Box &def) const
{
return (def.left >= left && def.top >= top && def.front >= front &&
def.right <= right && def.bottom <= bottom && def.back <= back);
}
/// Get the width of this box
size_t getWidth() const { return right-left; }
/// Get the height of this box
size_t getHeight() const { return bottom-top; }
/// Get the depth of this box
size_t getDepth() const { return back-front; }
};
/** Locate command-line options of the unary form '-blah' and of the
binary form '-blah foo', passing back the index of the next non-option.
@param numargs, argv The standard parameters passed to the main method
@param unaryOptList Map of unary options (i.e. those that do not require a parameter).
Should be pre-populated with, for example '-e' in the key and false in the
value. Options which are found will be set to true on return.
@param binOptList Map of binary options (i.e. those that require a parameter
e.g. '-e afile.txt').
Should be pre-populated with, for example '-e' and the default setting.
Options which are found will have the value updated.
*/
int _OgreExport findCommandLineOpts(int numargs, char** argv, UnaryOptionList& unaryOptList,
BinaryOptionList& binOptList);
/// Generic result of clipping
enum ClipResult
{
/// Nothing was clipped
CLIPPED_NONE = 0,
/// Partially clipped
CLIPPED_SOME = 1,
/// Everything was clipped away
CLIPPED_ALL = 2
};
/// Render window creation parameters.
struct RenderWindowDescription
{
String name;
unsigned int width;
unsigned int height;
bool useFullScreen;
NameValuePairList miscParams;
};
/// Render window creation parameters container.
typedef vector<RenderWindowDescription>::type RenderWindowDescriptionList;
/// Render window container.
typedef vector<RenderWindow*>::type RenderWindowList;
/// Utility class to generate a sequentially numbered series of names
class _OgreExport NameGenerator
{
protected:
String mPrefix;
unsigned long long int mNext;
OGRE_AUTO_MUTEX
public:
NameGenerator(const NameGenerator& rhs)
: mPrefix(rhs.mPrefix), mNext(rhs.mNext) {}
NameGenerator(const String& prefix) : mPrefix(prefix), mNext(1) {}
/// Generate a new name
String generate()
{
OGRE_LOCK_AUTO_MUTEX
std::ostringstream s;
s << mPrefix << mNext++;
return s.str();
}
/// Reset the internal counter
void reset()
{
OGRE_LOCK_AUTO_MUTEX
mNext = 1ULL;
}
/// Manually set the internal counter (use caution)
void setNext(unsigned long long int val)
{
OGRE_LOCK_AUTO_MUTEX
mNext = val;
}
/// Get the internal counter
unsigned long long int getNext() const
{
// lock even on get because 64-bit may not be atomic read
OGRE_LOCK_AUTO_MUTEX
return mNext;
}
};
/** Template class describing a simple pool of items.
*/
template <typename T>
class Pool
{
protected:
typedef typename list<T>::type ItemList;
ItemList mItems;
OGRE_AUTO_MUTEX
public:
Pool() {}
virtual ~Pool() {}
/** Get the next item from the pool.
@returns pair indicating whether there was a free item, and the item if so
*/
virtual std::pair<bool, T> removeItem()
{
OGRE_LOCK_AUTO_MUTEX
std::pair<bool, T> ret;
if (mItems.empty())
{
ret.first = false;
}
else
{
ret.first = true;
ret.second = mItems.front();
mItems.pop_front();
}
return ret;
}
/** Add a new item to the pool.
*/
virtual void addItem(const T& i)
{
OGRE_LOCK_AUTO_MUTEX
mItems.push_front(i);
}
/// Clear the pool
virtual void clear()
{
OGRE_LOCK_AUTO_MUTEX
mItems.clear();
}
};
/** @} */
/** @} */
}
#endif
|