/usr/include/OGRE/OgreAnimationTrack.h is in libogre-dev 1.7.4-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2011 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __AnimationTrack_H__
#define __AnimationTrack_H__
#include "OgrePrerequisites.h"
#include "OgreSimpleSpline.h"
#include "OgreRotationalSpline.h"
#include "OgreKeyFrame.h"
#include "OgreAnimable.h"
#include "OgrePose.h"
namespace Ogre
{
/** \addtogroup Core
* @{
*/
/** \addtogroup Animation
* @{
*/
/** Time index object used to search keyframe at the given position.
*/
class _OgreExport TimeIndex
{
protected:
/** The time position (in relation to the whole animation sequence)
*/
Real mTimePos;
/** The global keyframe index (in relation to the whole animation sequence)
that used to convert to local keyframe index, or INVALID_KEY_INDEX which
means global keyframe index unavailable, and then slight slow method will
used to search local keyframe index.
*/
uint mKeyIndex;
/** Indicate it's an invalid global keyframe index.
*/
static const uint INVALID_KEY_INDEX = (uint)-1;
public:
/** Construct time index object by the given time position.
*/
TimeIndex(Real timePos)
: mTimePos(timePos)
, mKeyIndex(INVALID_KEY_INDEX)
{
}
/** Construct time index object by the given time position and
global keyframe index.
@note In normally, you don't need to use this constructor directly, use
Animation::_getTimeIndex instead.
*/
TimeIndex(Real timePos, uint keyIndex)
: mTimePos(timePos)
, mKeyIndex(keyIndex)
{
}
bool hasKeyIndex(void) const
{
return mKeyIndex != INVALID_KEY_INDEX;
}
Real getTimePos(void) const
{
return mTimePos;
}
uint getKeyIndex(void) const
{
return mKeyIndex;
}
};
/** A 'track' in an animation sequence, i.e. a sequence of keyframes which affect a
certain type of animable object.
@remarks
This class is intended as a base for more complete classes which will actually
animate specific types of object, e.g. a bone in a skeleton to affect
skeletal animation. An animation will likely include multiple tracks each of which
can be made up of many KeyFrame instances. Note that the use of tracks allows each animable
object to have it's own number of keyframes, i.e. you do not have to have the
maximum number of keyframes for all animable objects just to cope with the most
animated one.
@remarks
Since the most common animable object is a Node, there are options in this class for associating
the track with a Node which will receive keyframe updates automatically when the 'apply' method
is called.
@remarks
By default rotation is done using shortest-path algorithm.
It is possible to change this behaviour using
setUseShortestRotationPath() method.
*/
class _OgreExport AnimationTrack : public AnimationAlloc
{
public:
/** Listener allowing you to override certain behaviour of a track,
for example to drive animation procedurally.
*/
class _OgreExport Listener
{
public:
virtual ~Listener() {}
/** Get an interpolated keyframe for this track at the given time.
@returns true if the KeyFrame was populated, false if not.
*/
virtual bool getInterpolatedKeyFrame(const AnimationTrack* t, const TimeIndex& timeIndex, KeyFrame* kf) = 0;
};
/// Constructor
AnimationTrack(Animation* parent, unsigned short handle);
virtual ~AnimationTrack();
/** Get the handle associated with this track. */
unsigned short getHandle(void) const { return mHandle; }
/** Returns the number of keyframes in this animation. */
virtual unsigned short getNumKeyFrames(void) const;
/** Returns the KeyFrame at the specified index. */
virtual KeyFrame* getKeyFrame(unsigned short index) const;
/** Gets the 2 KeyFrame objects which are active at the time given, and the blend value between them.
@remarks
At any point in time in an animation, there are either 1 or 2 keyframes which are 'active',
1 if the time index is exactly on a keyframe, 2 at all other times i.e. the keyframe before
and the keyframe after.
@par
This method returns those keyframes given a time index, and also returns a parametric
value indicating the value of 't' representing where the time index falls between them.
E.g. if it returns 0, the time index is exactly on keyFrame1, if it returns 0.5 it is
half way between keyFrame1 and keyFrame2 etc.
@param timeIndex The time index.
@param keyFrame1 Pointer to a KeyFrame pointer which will receive the pointer to the
keyframe just before or at this time index.
@param keyFrame2 Pointer to a KeyFrame pointer which will receive the pointer to the
keyframe just after this time index.
@param firstKeyIndex Pointer to an unsigned short which, if supplied, will receive the
index of the 'from' keyframe in case the caller needs it.
@returns Parametric value indicating how far along the gap between the 2 keyframes the timeIndex
value is, e.g. 0.0 for exactly at 1, 0.25 for a quarter etc. By definition the range of this
value is: 0.0 <= returnValue < 1.0 .
*/
virtual Real getKeyFramesAtTime(const TimeIndex& timeIndex, KeyFrame** keyFrame1, KeyFrame** keyFrame2,
unsigned short* firstKeyIndex = 0) const;
/** Creates a new KeyFrame and adds it to this animation at the given time index.
@remarks
It is better to create KeyFrames in time order. Creating them out of order can result
in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
for you, so you don't need to create this one, just access it using getKeyFrame(0);
@param timePos The time from which this KeyFrame will apply.
*/
virtual KeyFrame* createKeyFrame(Real timePos);
/** Removes a KeyFrame by it's index. */
virtual void removeKeyFrame(unsigned short index);
/** Removes all the KeyFrames from this track. */
virtual void removeAllKeyFrames(void);
/** Gets a KeyFrame object which contains the interpolated transforms at the time index specified.
@remarks
The KeyFrame objects held by this class are transformation snapshots at
discrete points in time. Normally however, you want to interpolate between these
keyframes to produce smooth movement, and this method allows you to do this easily.
In animation terminology this is called 'tweening'.
@param timeIndex The time (in relation to the whole animation sequence)
@param kf Keyframe object to store results
*/
virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const = 0;
/** Applies an animation track to the designated target.
@param timeIndex The time position in the animation to apply.
@param weight The influence to give to this track, 1.0 for full influence, less to blend with
other animations.
@param scale The scale to apply to translations and scalings, useful for
adapting an animation to a different size target.
*/
virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f) = 0;
/** Internal method used to tell the track that keyframe data has been
changed, which may cause it to rebuild some internal data. */
virtual void _keyFrameDataChanged(void) const {}
/** Method to determine if this track has any KeyFrames which are
doing anything useful - can be used to determine if this track
can be optimised out.
*/
virtual bool hasNonZeroKeyFrames(void) const { return true; }
/** Optimise the current track by removing any duplicate keyframes. */
virtual void optimise(void) {}
/** Internal method to collect keyframe times, in unique, ordered format. */
virtual void _collectKeyFrameTimes(vector<Real>::type& keyFrameTimes);
/** Internal method to build keyframe time index map to translate global lower
bound index to local lower bound index. */
virtual void _buildKeyFrameIndexMap(const vector<Real>::type& keyFrameTimes);
/** Set a listener for this track. */
virtual void setListener(Listener* l) { mListener = l; }
/** Returns the parent Animation object for this track. */
Animation *getParent() const { return mParent; }
protected:
typedef vector<KeyFrame*>::type KeyFrameList;
KeyFrameList mKeyFrames;
Animation* mParent;
unsigned short mHandle;
Listener* mListener;
/// Map used to translate global keyframe time lower bound index to local lower bound index
typedef vector<ushort>::type KeyFrameIndexMap;
KeyFrameIndexMap mKeyFrameIndexMap;
/// Create a keyframe implementation - must be overridden
virtual KeyFrame* createKeyFrameImpl(Real time) = 0;
/// Internal method for clone implementation
virtual void populateClone(AnimationTrack* clone) const;
};
/** Specialised AnimationTrack for dealing with generic animable values.
*/
class _OgreExport NumericAnimationTrack : public AnimationTrack
{
public:
/// Constructor
NumericAnimationTrack(Animation* parent, unsigned short handle);
/// Constructor, associates with an AnimableValue
NumericAnimationTrack(Animation* parent, unsigned short handle,
AnimableValuePtr& target);
/** Creates a new KeyFrame and adds it to this animation at the given time index.
@remarks
It is better to create KeyFrames in time order. Creating them out of order can result
in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
for you, so you don't need to create this one, just access it using getKeyFrame(0);
@param timePos The time from which this KeyFrame will apply.
*/
virtual NumericKeyFrame* createNumericKeyFrame(Real timePos);
/// @copydoc AnimationTrack::getInterpolatedKeyFrame
virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const;
/// @copydoc AnimationTrack::apply
virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f);
/** Applies an animation track to a given animable value.
@param anim The AnimableValue to which to apply the animation
@param timeIndex The time position in the animation to apply.
@param weight The influence to give to this track, 1.0 for full influence, less to blend with
other animations.
@param scale The scale to apply to translations and scalings, useful for
adapting an animation to a different size target.
*/
void applyToAnimable(const AnimableValuePtr& anim, const TimeIndex& timeIndex,
Real weight = 1.0, Real scale = 1.0f);
/** Returns a pointer to the associated animable object (if any). */
virtual const AnimableValuePtr& getAssociatedAnimable(void) const;
/** Sets the associated animable object which will be automatically
affected by calls to 'apply'. */
virtual void setAssociatedAnimable(const AnimableValuePtr& val);
/** Returns the KeyFrame at the specified index. */
NumericKeyFrame* getNumericKeyFrame(unsigned short index) const;
/** Clone this track (internal use only) */
NumericAnimationTrack* _clone(Animation* newParent) const;
protected:
/// Target to animate
AnimableValuePtr mTargetAnim;
/// @copydoc AnimationTrack::createKeyFrameImpl
KeyFrame* createKeyFrameImpl(Real time);
};
/** Specialised AnimationTrack for dealing with node transforms.
*/
class _OgreExport NodeAnimationTrack : public AnimationTrack
{
public:
/// Constructor
NodeAnimationTrack(Animation* parent, unsigned short handle);
/// Constructor, associates with a Node
NodeAnimationTrack(Animation* parent, unsigned short handle,
Node* targetNode);
/// Destructor
virtual ~NodeAnimationTrack();
/** Creates a new KeyFrame and adds it to this animation at the given time index.
@remarks
It is better to create KeyFrames in time order. Creating them out of order can result
in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
for you, so you don't need to create this one, just access it using getKeyFrame(0);
@param timePos The time from which this KeyFrame will apply.
*/
virtual TransformKeyFrame* createNodeKeyFrame(Real timePos);
/** Returns a pointer to the associated Node object (if any). */
virtual Node* getAssociatedNode(void) const;
/** Sets the associated Node object which will be automatically affected by calls to 'apply'. */
virtual void setAssociatedNode(Node* node);
/** As the 'apply' method but applies to a specified Node instead of associated node. */
virtual void applyToNode(Node* node, const TimeIndex& timeIndex, Real weight = 1.0,
Real scale = 1.0f);
/** Sets the method of rotation calculation */
virtual void setUseShortestRotationPath(bool useShortestPath);
/** Gets the method of rotation calculation */
virtual bool getUseShortestRotationPath() const;
/// @copydoc AnimationTrack::getInterpolatedKeyFrame
virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const;
/// @copydoc AnimationTrack::apply
virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f);
/// @copydoc AnimationTrack::_keyFrameDataChanged
void _keyFrameDataChanged(void) const;
/** Returns the KeyFrame at the specified index. */
virtual TransformKeyFrame* getNodeKeyFrame(unsigned short index) const;
/** Method to determine if this track has any KeyFrames which are
doing anything useful - can be used to determine if this track
can be optimised out.
*/
virtual bool hasNonZeroKeyFrames(void) const;
/** Optimise the current track by removing any duplicate keyframes. */
virtual void optimise(void);
/** Clone this track (internal use only) */
NodeAnimationTrack* _clone(Animation* newParent) const;
protected:
/// Specialised keyframe creation
KeyFrame* createKeyFrameImpl(Real time);
// Flag indicating we need to rebuild the splines next time
virtual void buildInterpolationSplines(void) const;
// Struct for store splines, allocate on demand for better memory footprint
struct Splines
{
SimpleSpline positionSpline;
SimpleSpline scaleSpline;
RotationalSpline rotationSpline;
};
Node* mTargetNode;
// Prebuilt splines, must be mutable since lazy-update in const method
mutable Splines* mSplines;
mutable bool mSplineBuildNeeded;
/// Defines if rotation is done using shortest path
mutable bool mUseShortestRotationPath ;
};
/** Type of vertex animation.
Vertex animation comes in 2 types, morph and pose. The reason
for the 2 types is that we have 2 different potential goals - to encapsulate
a complete, flowing morph animation with multiple keyframes (a typical animation,
but implemented by having snapshots of the vertex data at each keyframe),
or to represent a single pose change, for example a facial expression.
Whilst both could in fact be implemented using the same system, we choose
to separate them since the requirements and limitations of each are quite
different.
@par
Morph animation is a simple approach where we have a whole series of
snapshots of vertex data which must be interpolated, e.g. a running
animation implemented as morph targets. Because this is based on simple
snapshots, it's quite fast to use when animating an entire mesh because
it's a simple linear change between keyframes. However, this simplistic
approach does not support blending between multiple morph animations.
If you need animation blending, you are advised to use skeletal animation
for full-mesh animation, and pose animation for animation of subsets of
meshes or where skeletal animation doesn't fit - for example facial animation.
For animating in a vertex shader, morph animation is quite simple and
just requires the 2 vertex buffers (one the original position buffer)
of absolute position data, and an interpolation factor. Each track in
a morph animation refrences a unique set of vertex data.
@par
Pose animation is more complex. Like morph animation each track references
a single unique set of vertex data, but unlike morph animation, each
keyframe references 1 or more 'poses', each with an influence level.
A pose is a series of offsets to the base vertex data, and may be sparse - ie it
may not reference every vertex. Because they're offsets, they can be
blended - both within a track and between animations. This set of features
is very well suited to facial animation.
@par
For example, let's say you modelled a face (one set of vertex data), and
defined a set of poses which represented the various phonetic positions
of the face. You could then define an animation called 'SayHello', containing
a single track which referenced the face vertex data, and which included
a series of keyframes, each of which referenced one or more of the facial
positions at different influence levels - the combination of which over
time made the face form the shapes required to say the word 'hello'. Since
the poses are only stored once, but can be referenced may times in
many animations, this is a very powerful way to build up a speech system.
@par
The downside of pose animation is that it can be more difficult to set up.
Also, since it uses more buffers (one for the base data, and one for each
active pose), if you're animating in hardware using vertex shaders you need
to keep an eye on how many poses you're blending at once. You define a
maximum supported number in your vertex program definition, see the
includes_pose_animation material script entry.
@par
So, by partitioning the vertex animation approaches into 2, we keep the
simple morph technique easy to use, whilst still allowing all
the powerful techniques to be used. Note that morph animation cannot
be blended with other types of vertex animation (pose animation or other
morph animation); pose animation can be blended with other pose animation
though, and both types can be combined with skeletal animation. Also note
that all morph animation can be expressed as pose animation, but not vice
versa.
*/
enum VertexAnimationType
{
/// No animation
VAT_NONE = 0,
/// Morph animation is made up of many interpolated snapshot keyframes
VAT_MORPH = 1,
/// Pose animation is made up of a single delta pose keyframe
VAT_POSE = 2
};
/** Specialised AnimationTrack for dealing with changing vertex position information.
@see VertexAnimationType
*/
class _OgreExport VertexAnimationTrack : public AnimationTrack
{
public:
/** The target animation mode */
enum TargetMode
{
/// Interpolate vertex positions in software
TM_SOFTWARE,
/** Bind keyframe 1 to position, and keyframe 2 to a texture coordinate
for interpolation in hardware */
TM_HARDWARE
};
/// Constructor
VertexAnimationTrack(Animation* parent, unsigned short handle, VertexAnimationType animType);
/// Constructor, associates with target VertexData and temp buffer (for software)
VertexAnimationTrack(Animation* parent, unsigned short handle, VertexAnimationType animType,
VertexData* targetData, TargetMode target = TM_SOFTWARE);
/** Get the type of vertex animation we're performing. */
VertexAnimationType getAnimationType(void) const { return mAnimationType; }
/** Creates a new morph KeyFrame and adds it to this animation at the given time index.
@remarks
It is better to create KeyFrames in time order. Creating them out of order can result
in expensive reordering processing. Note that a KeyFrame at time index 0.0 is always created
for you, so you don't need to create this one, just access it using getKeyFrame(0);
@param timePos The time from which this KeyFrame will apply.
*/
virtual VertexMorphKeyFrame* createVertexMorphKeyFrame(Real timePos);
/** Creates the single pose KeyFrame and adds it to this animation.
*/
virtual VertexPoseKeyFrame* createVertexPoseKeyFrame(Real timePos);
/** This method in fact does nothing, since interpolation is not performed
inside the keyframes for this type of track.
*/
virtual void getInterpolatedKeyFrame(const TimeIndex& timeIndex, KeyFrame* kf) const
{ (void)timeIndex; (void)kf; }
/// @copydoc AnimationTrack::apply
virtual void apply(const TimeIndex& timeIndex, Real weight = 1.0, Real scale = 1.0f);
/** As the 'apply' method but applies to specified VertexData instead of
associated data. */
virtual void applyToVertexData(VertexData* data,
const TimeIndex& timeIndex, Real weight = 1.0,
const PoseList* poseList = 0);
/** Returns the morph KeyFrame at the specified index. */
VertexMorphKeyFrame* getVertexMorphKeyFrame(unsigned short index) const;
/** Returns the pose KeyFrame at the specified index. */
VertexPoseKeyFrame* getVertexPoseKeyFrame(unsigned short index) const;
/** Sets the associated VertexData which this track will update. */
void setAssociatedVertexData(VertexData* data) { mTargetVertexData = data; }
/** Gets the associated VertexData which this track will update. */
VertexData* getAssociatedVertexData(void) const { return mTargetVertexData; }
/// Set the target mode
void setTargetMode(TargetMode m) { mTargetMode = m; }
/// Get the target mode
TargetMode getTargetMode(void) const { return mTargetMode; }
/** Method to determine if this track has any KeyFrames which are
doing anything useful - can be used to determine if this track
can be optimised out.
*/
virtual bool hasNonZeroKeyFrames(void) const;
/** Optimise the current track by removing any duplicate keyframes. */
virtual void optimise(void);
/** Clone this track (internal use only) */
VertexAnimationTrack* _clone(Animation* newParent) const;
protected:
/// Animation type
VertexAnimationType mAnimationType;
/// Target to animate
VertexData* mTargetVertexData;
/// Mode to apply
TargetMode mTargetMode;
/// @copydoc AnimationTrack::createKeyFrameImpl
KeyFrame* createKeyFrameImpl(Real time);
/// Utility method for applying pose animation
void applyPoseToVertexData(const Pose* pose, VertexData* data, Real influence);
};
/** @} */
/** @} */
}
#endif
|