/usr/include/odinpara/geometry.h is in libodin-dev 1.8.4-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | /***************************************************************************
geometry.h - description
-------------------
begin : Wed Apr 17 2002
copyright : (C) 2001 by Thies H. Jochimsen
email : jochimse@cns.mpg.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#ifndef GEOMETRY_H
#define GEOMETRY_H
#include <odinpara/jdxblock.h>
#include <odinpara/jdxnumbers.h>
#include <odinpara/jdxarrays.h>
#include <odinpara/odinpara.h>
/**
* @addtogroup odinpara
* @{
*/
/**
* Enum to specify which boundary of a slice to take for a given direction
*/
enum sliceBoundary {lowerBound=0,upperBound,n_boundaries};
/**
* The principal slice direction in the anatomical system of reference
* - sagittal: Slice is perpendicular to left-right direction
* - coronal: Slice is perpendicular to anterior-posterior direction
* - axial: Slice is perpendicular to head-foot direction
*/
enum sliceOrientation {sagittal=0,coronal,axial,n_orientations};
/**
* The geometry mode
* - slicepack: A stack of equidistant parallel slices
* - voxel_3d: A single 3D volume
*/
enum geometryMode {slicepack=0,voxel_3d,n_geometry_modes};
////////////////////////////////////////////////////////////////////////////
/**
* \brief Rotation Matrix
*
* This class represents 3 by 3 rotation matrix
*/
class RotMatrix : public virtual Labeled {
public:
/**
* default constructor for a 3 by 3 rotation matrix
*/
RotMatrix(const STD_string& object_label = "unnamedRotMatrix" );
/**
* constructs a rotation matrix from an existing rotation matrix
*/
RotMatrix(const RotMatrix& sct);
/**
* returns a row of rotation matrix
*/
dvector& operator [] (unsigned int index) {return matrix[index%3];} // make sure index is lower than 3
/**
* returns a row of rotation matrix
*/
const dvector& operator [] (unsigned int index) const {return matrix[index%3];} // make sure index is lower than 3
/**
* assignment operator
*/
RotMatrix& operator = (const RotMatrix& sct);
/**
* returns true if srm is element-wise equal to this. Two elements are
* considered equal if their difference does not exceed GEO_CHECK_LIMIT.
*
*/
bool operator == (const RotMatrix& srm) const;
// dummy comparison operator for lists
bool operator < (const RotMatrix& srm) const;
/**
* returns the product this * vec
*/
dvector operator * (const dvector& vec) const;
/**
* returns the product this * matrix
*/
RotMatrix operator * (const RotMatrix& matrix) const;
/**
* Returns the matrix as a 2-dim farray
*/
operator farray () const;
/**
* Create anti-clockwise in-plane rotation matrix with angle 'phi' (in rad).
*/
RotMatrix& set_inplane_rotation(float phi);
/**
* returns a string describing the rotation matrix
*/
STD_string print() const;
private:
friend class RotMatrixVector;
class rowVec : public dvector {
public:
rowVec() : dvector(3) {};
~rowVec() {};
};
// bool check_and_correct();
rowVec matrix[3];
// static dvector returndummy;
};
////////////////////////////////////////////////////////////////////////////
/**
* \brief Geometry Settings
*
* Depending on the selected geometryMode, this class describes a pack
* of parallel and congruent slices, or a 3D volume, .i.e. a voxel.
*
* The patients x,y,z coordinate system used for the gradients is as follows:
* If standing in front of the magnet with the feet of the patient
* pointing towards you, the axes are oriented
*
* - x: from right to left (in the final image left/right will then have the correct polarity)
* - y: from bottom to top (floor to ceiling)
* - z: pointing away from you to the patients head
*
*
* The three orientation angles 'heightAngle', 'azimutAngle', and 'inplaneAngle'
* (in degree) describe the orientation of the slicepack/voxel relative to
* the x/y/z-coordinate system of the gradients.
* If all these angles are zero, the read/phase/slice-system
* of the slicepack/voxel is the same as the x/y/z-system of
* the gradients. Otherwise, the system is rotated by the following
* angles (in the given order):
*
* - azimutAngle: Anti-clockwise rotation around y-axis.
* - heightAngle: Angle between slice vector (which is perp. to the slice) and x-z-plane
* - inplaneAngle: Clockwise rotation around slice vector.
*
*/
class Geometry : public JcampDxBlock {
public:
/**
* Constructs a Geometry with the given label
*/
Geometry(const STD_string& label="unnamedGeometry");
/**
* Copy constructor
*/
Geometry(const Geometry& ia);
/**
* Assignment operator
*/
Geometry& operator = (const Geometry& ia);
/**
* Sets the geometry selection mode
*/
Geometry& set_Mode(geometryMode mode);
/**
* Returns the geometry selection mode
*/
geometryMode get_Mode() const {return geometryMode(int(Mode));}
/**
* Sets the Field Of View in the specified direction
*/
Geometry& set_FOV(direction dir,double fov);
/**
* Returns the Field Of View in the specified direction
*/
double get_FOV(direction dir) const;
/**
* Sets the spatial offset in the specified direction
*/
Geometry& set_offset(direction dir,double offset);
/**
* Returns the spatial offset in the specified direction
*/
double get_offset(direction dir) const;
/**
* Sets the number of slices of the current slice pack
*/
Geometry& set_nSlices(unsigned int nslices);
/**
* Returns the number of slices of the current slice pack
*/
unsigned int get_nSlices() const {return nSlices;};
/**
* Sets the slice thickness of the current slice pack
*/
Geometry& set_sliceThickness(double thick);
/**
* Sets the slice interslice distance
*/
Geometry& set_sliceDistance(double dist);
/**
* Returns the slice interslice distance
*/
double get_sliceDistance() const {return sliceDistance;}
/**
* Returns the normalised vector for the read direction in the laboratory system of reference
*/
dvector get_readVector() const;
/**
* Returns the normalised vector for the phase direction in the laboratory system of reference
*/
dvector get_phaseVector() const;
/**
* Returns the normalised vector for the slice direction in the laboratory system of reference
*/
dvector get_sliceVector() const;
/**
* Returns the vector of spatial offsets in slice direction for the different slices of the slicepack.
*/
dvector get_sliceOffsetVector() const;
/**
* Returns the slice thickness for the slices
*/
double get_sliceThickness() const {return sliceThickness;}
/**
* Returns a 5-dimensional array that contains the corner points of the slices/voxels where indexing is as follows:
* (unsigned int slice,sliceBoundary boundary1,sliceBoundary boundary2,sliceBoundary boundary3, axis direction) with
* - slice: The slice for the point
* - boundary1: The boundary in the read direction
* - boundary2: The boundary in the phase direction
* - boundary3: The boundary in the slice direction, the size is 1 in slicepack mode
* - direction: The x,y,z index
*
* The points are transformed to slice 'backgrslice' the coordinate system of 'background'.
*
*/
darray get_cornerPoints(const Geometry& background, unsigned int backgrslice) const;
/**
* Set the angle parameters to match the specified anatomical slice orientation
*/
Geometry& set_orientation(sliceOrientation orientation);
/**
* Returns the major anatomical slice orientation
*/
sliceOrientation get_orientation() const;
/**
* Returns the orientation of the slice, i.e. the three orientation angles
* 'heightAng', 'azimutAng' and 'inplaneAng'.
* 'revSlice' returns whether the slice direction (handness) is reversed.
*/
void get_orientation(double& heightAng, double& azimutAng, double& inplaneAng, bool& revSlice) const;
/**
* Specifies the orientation of the slice pack by giving the three orientation angles
* 'heightAng', 'azimutAng' and 'inplaneAng'.
* Optionally, the slice direction can be reversed by setting 'revSlice' to true.
*/
Geometry& set_orientation(double heightAng, double azimutAng, double inplaneAng, bool revSlice=false);
/**
* Specifies the orientation of the slicepack/voxel by giving the three
* vectors 'readvec', 'phasevec', and 'slicevec' which point in read,
* phase, and slice direction. The vector 'offset' must contain the spatial
* offset of the center of the slicepack/voxel.
*/
Geometry& set_orientation_and_offset(const dvector& readvec, const dvector& phasevec, const dvector& slicevec, const dvector& centervec);
/**
* Returns a vector pointing to the center of the slicepack/voxel.
*/
dvector get_center() const;
/**
* Returns the rotation matrix to convert the gradient strengths in the
* sequence coordinate system (read,phase,slice) to the laboratory system (x,y,z).
* If 'transpose' is set to true, the transposed matrix is returned.
*/
RotMatrix get_gradrotmatrix(bool transpose=false) const;
/**
* Coordinate transformation from sequence coordinate system (read,phase,slice)
* of slice 'slice' to laboratory system (x,y,z), or vice versa if
* 'inverse' is set to 'true'.
*/
dvector transform(const dvector& rpsvec, bool inverse=false) const;
/**
* Transpose geometry in-plane, 'reverse_read' and 'reverse_phase'
* can be used to reverse read/phase direction before transposing.
*/
Geometry& transpose_inplane(bool reverse_read=false, bool reverse_phase=false);
/**
* Resets the slicepacks geometry to its inintial state
*/
Geometry& reset();
/**
* Updates internal relations of the geometry parameters
*/
Geometry& update();
private:
dvector get_readVector_inplane() const;
dvector get_phaseVector_inplane() const;
void append_all_members();
double deg2rad(double degree) const {return degree/180.0*PII;}
JDXenum Mode;
JDXdouble FOVread;
JDXdouble offsetRead;
JDXdouble FOVphase;
JDXdouble offsetPhase;
JDXdouble FOVslice;
JDXdouble offsetSlice;
JDXdouble heightAngle;
JDXdouble azimutAngle;
JDXdouble inplaneAngle;
JDXbool reverseSlice;
JDXint nSlices;
JDXdouble sliceDistance;
JDXdouble sliceThickness;
JDXaction Reset;
JDXaction Transpose;
// cache to speed up repetitive calls to transform()
mutable bool cache_up2date;
mutable bool inv_trans_cache;
mutable double rotmat_cache[3][3];
mutable double offset_cache[3];
};
/** @}
*/
#endif
|