This file is indexed.

/usr/share/doc/NTL/tour-ex6.html is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
<html>
<head>
<title>
A Tour of NTL: Examples: Floating Point Classes </title>
</head>

<body bgcolor="#fff9e6">
<center>
<a href="tour-ex5.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<img src="arrow3.gif" alt="[Next]" align=bottom>
</center>

<h1> 
<p align=center>
A Tour of NTL: Examples: Floating Point Classes
</p>
</h1>

<p> <hr> <p>

NTL also supports arbitrary precision floating point with 
the class <tt>RR</tt>.
Additionally, it supports two specialized classes: <tt>quad_float</tt>,
which gives a form of quadruple precision, but without an extended
exponent range, 
and <tt>xdouble</tt>,
which gives double precision, but with an extended exponent range.
The advantage of the latter two classes is efficiency.

<p>

Here again is a program that reads a list of numbers from the input,
and outputs the sum of their squares, using the class <tt>RR</tt>.
<p>

<pre>
#include &lt;NTL/RR.h&gt;

int main()
{
   RR acc, val;

   acc = 0;
   while (SkipWhiteSpace(cin)) {
      cin &gt;&gt; val;
      acc += val*val;
   }

   cout &lt;&lt; acc &lt;&lt; "\n";
}
</pre>

<p>

The precision used for the computation can be set by executing 
<pre>
   RR::SetPrecision(p);
</pre>
which sets the effective precision to <tt>p</tt> bits.
By default, <tt>p=150</tt>.
All of the basic arithmetic operations compute their results
by rounding to the nearest <tt>p</tt>-bit floating point number. 
The semantics of this are exactly the same as in the IEEE floating
point standard (except that there are no special values, like 
"infinity" and "not a number").

<p>

The number of <i>decimal</i> digits of precision that are used when
printing an <tt>RR</tt> can be set be executing
<pre>
   RR::SetOutputPrecision(d);
</pre>
which sets the output precision to <tt>d</tt>.
By default, <tt>d=10</tt>.

<p>
See <a href="RR.txt"><tt>RR.txt</tt></a> for details.

<p>

By replacing the occurences of <tt>RR</tt> by either <tt>quad_float</tt>
or <tt>xdouble</tt>, one gets an equivalent program using one of the
other floating point classes.
The output precision for these two classes can be controlled just
as with <tt>RR</tt>.
See <a href="quad_float.txt"><tt>quad_float.txt</tt></a> and 
<a href="xdouble.txt"><tt>xdouble.txt</tt></a>
for details.

<p>


<center>
<a href="tour-ex5.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
 <img src="arrow3.gif" alt="[Next]" align=bottom>
</center>

</body>
</html>