This file is indexed.

/usr/share/doc/NTL/tour-ex5.html is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
<html>
<head>
<title>
A Tour of NTL: Examples: Extension Rings and Fields </title>
</head>

<body bgcolor="#fff9e6">
<center>
<a href="tour-ex4.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-ex6.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

<h1> 
<p align=center>
A Tour of NTL: Examples: Extension Rings and Fields
</p>
</h1>

<p> <hr> <p>

NTL also supports extension rings and fields over finite fields,
and polynomial arithmetic over such extensions.
Here is a little program that illustrates this.

<p>
<pre>
#include &lt;NTL/ZZ_pXFactoring.h&gt;
#include &lt;NTL/ZZ_pEX.h&gt;

NTL_CLIENT

int main()
{
   ZZ_p::init(to_ZZ(17)); // define GF(17)

   ZZ_pX P;
   BuildIrred(P, 10); // generate an irreducible polynomial P
                      // of degree 10 over GF(17)

   ZZ_pE::init(P); // define GF(17^10)

   ZZ_pEX f, g, h;  // declare polynomials over GF(17^10)

   random(f, 20);  // f is a random, monic polynomial of degree 20
   SetCoeff(f, 20);

   random(h, 20); // h is a random polynomial of degree less than 20

   g = MinPolyMod(h, f); // compute the minimum polynomial of h modulo f

   if (g == 0) Error("oops (1)"); // check that g != 0

   if (CompMod(g, h, f) != 0) // check that g(h) = 0 mod f
      Error("oops (2)");
}
</pre>

<p>
This example illustrates building extension rings over <tt>ZZ_p</tt>.
One can also use <tt>zz_p</tt> and <tt>GF2</tt> as base classes;
the syntax is exactly the same.

<p>
See <a href="ZZ_pE.txt"><tt>ZZ_pE.txt</tt></a> for the basics of the extension
ring <tt>ZZ_pE</tt> over <tt>ZZ_p</tt>.
Also see <a href="ZZ_pEX.txt"><tt>ZZ_pEX.txt</tt></a> for polynomial
arithmetic over <tt>ZZ_pE</tt>, and 
<a href="ZZ_pEXFactoring.txt"><tt>ZZ_pEXFactoring.txt</tt></a> for factoring
routines over <tt>ZZ_pE</tt>.
See <a href="vec_ZZ_pE.txt"><tt>vec_ZZ_pE.txt</tt></a> for vectors over <tt>ZZ_pE</tt>,
and <a href="mat_ZZ_pE.txt"><tt>mat_ZZ_pE.txt</tt></a> for matrices over <tt>ZZ_pE</tt>.

<p>
See <a href="lzz_pE.txt"><tt>lzz_pE.txt</tt></a> for the basics of the extension
ring <tt>zz_pE</tt> over <tt>zz_p</tt>.
Also see <a href="lzz_pEX.txt"><tt>lzz_pEX.txt</tt></a> for polynomial
arithmetic over <tt>zz_pE</tt>, and 
<a href="lzz_pEXFactoring.txt"><tt>lzz_pEXFactoring.txt</tt></a> for factoring
routines over <tt>zz_pE</tt>.
See <a href="vec_lzz_pE.txt"><tt>vec_lzz_pE.txt</tt></a> for vectors over <tt>zz_pE</tt>,
and <a href="mat_lzz_pE.txt"><tt>mat_lzz_pE.txt</tt></a> for matrices over <tt>zz_pE</tt>.

<p>
See <a href="GF2E.txt"><tt>GF2E.txt</tt></a> for the basics of the extension
ring <tt>GF2E</tt> over <tt>GF2</tt>.
Also see <a href="GF2EX.txt"><tt>GF2EX.txt</tt></a> for polynomial
arithmetic over <tt>GF2E</tt>, and 
<a href="GF2EXFactoring.txt"><tt>GF2EXFactoring.txt</tt></a> for factoring
routines over <tt>GF2E</tt>.
See <a href="vec_GF2E.txt"><tt>vec_GF2E.txt</tt></a> for vectors over <tt>GF2E</tt>,
and <a href="mat_GF2E.txt"><tt>mat_GF2E.txt</tt></a> for matrices over <tt>GF2E</tt>.


<center>
<a href="tour-ex4.html"><img src="arrow1.gif" alt="[Previous]" align=bottom></a>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-ex6.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

</body>
</html>