This file is indexed.

/usr/share/doc/NTL/tour-ex1.html is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
<html>
<head>
<title>
A Tour of NTL: Examples: Big Integers </title>
</head>

<body bgcolor="#fff9e6">

<center>
<img src="arrow1.gif" alt="[Previous]" align=bottom>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-ex2.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

<h1> 
<p align=center>
A Tour of NTL: Examples: Big Integers
</p>
</h1>

<p> <hr>  <p>

The first example makes use of the class
<tt>ZZ</tt>,
which
represents "big integers": signed, arbitrary length integers.
This program reads two big integers <tt>a</tt> and <tt>b</tt>,
and prints <tt>(a+1)*(b+1)</tt>.

<p>
<pre>
#include &lt;NTL/ZZ.h&gt;

NTL_CLIENT

int main()
{
   ZZ a, b, c; 

   cin &gt;&gt; a; 
   cin &gt;&gt; b; 
   c = (a+1)*(b+1);
   cout &lt;&lt; c &lt;&lt; "\n";
}
</pre>

<p>

This program declares three variables <tt>a</tt>, <tt>b</tt>,
and <tt>c</tt> of type <tt>ZZ</tt>.
The values <tt>a</tt> and <tt>b</tt> are read from standard input.
The value <tt>c</tt> is then computed as <tt>(a+1)*(b+1)</tt>.
Finally, the value of <tt>c</tt> is printed to the standard output.

<p>
Note that one can compute with <tt>ZZ</tt>s much as with ordinary
<tt>int</tt>s, in that most of the standard arithmetic and
assignment operators can be used in a direct and natural way.
The <tt>C++</tt> compiler and the NTL library routines 
automatically take care
of all the bookkeeping involved
with memory management and temporary objects.

<p>
Note the macro <tt>NTL_CLIENT</tt>.
When compiling NTL is ISO mode (the default), this
expands to 
<pre>
   using namespace std;
   using namespace NTL;
</pre>
When compiling NTL in traditional mode, this expands
to the empty string.

<p> <hr> <p>

Here's a program that reads a list of integers from standard 
input and prints the sum of their squares.

<p>
<pre>
#include &lt;NTL/ZZ.h&gt;

NTL_CLIENT

int main()
{
   ZZ acc, val;

   acc = 0;
   while (SkipWhiteSpace(cin)) {
      cin &gt;&gt; val;
      acc += val*val;
   }

   cout &lt;&lt; acc &lt;&lt; "\n";
}
</pre>

<p>

The function <tt>SkipWhiteSpace</tt> is defined by NTL.
It skips over white space, and returns 1 if there is something
following it.
This function is useful, because
NTL's input operators raise an error if an input
is missing or ill-formed. 
This is different from the standard I/O library,
which does not raise an error.
Personally, I find that not raising an error, or at least
an exception, is a bad idea, since the caller of the I/O
routine must constantly check the status of the input
stream.




<p>
<hr>
<p>

Here's a simple modular exponentiation routine for computing
<tt>a^e mod n</tt>.
NTL already provides a more sophisticated one, though.

<p>
<pre>
ZZ PowerMod(const ZZ&amp; a, const ZZ&amp; e, const ZZ&amp; n)
{
   if (e == 0) return to_ZZ(1);

   long k = NumBits(e);

   ZZ res;
   res = 1;

   for (long i = k-1; i &gt;= 0; i--) {
      res = (res*res) % n;
      if (bit(e, i) == 1) res = (res*a) % n;
   }

   if (e &lt; 0)
      return InvMod(res, n);
   else
      return res;
}
</pre>
<p>

Note that as an alternative, we could implement the inner loop
as follows:

<pre>
   res = SqrMod(res, n);
   if (bit(e, i) == 1) res = MulMod(res, a, n);
</pre>

We could also write this as:

<pre>
   SqrMod(res, res, n);
   if (bit(e, i) == 1) MulMod(res, res, a, n);
</pre>

This illustrates an important point about NTL's programming interface.
For every function in NTL, there is a procedural version that
stores its result in its first argument.
The reason for using the procedural variant is efficieny:
on every iteration through the above loop, the functional form
of <tt>SqrMod</tt> will cause a temporary <tt>ZZ</tt> object to
be created and destroyed, whereas the procedural version 
will not create any temporaries.
Where performance is critical, the procedural version
is to be preferred.
Although it is usually silly to get too worked up about performance,
it may be reasonable to argue that modular exponentiation
is an important enough routine that it should be as fast as possible.

<p>

Note that when the functional version of a function
can be naturally named with an operator, this is done.
So for example, NTL provides a 3-argument <tt>mul</tt> routine
for <tt>ZZ</tt> multiplication, and a functional version
whose name is <tt>operator *</tt>, and not <tt>mul</tt>.

<p>

While we are taking about temporaries, consider the first version
of the inner loop.
Execution of the statement
<pre>
   res = (res*res) % n;
</pre>
will result in the creation of two temporary objects,
one for the product, and one for the result of the mod operation,
whose value is copied into <tt>res</tt>.
Of course, the compiler automatically generates the code for
cleaning up temporaries and other local objects at the right time.
The programmer does not have to worry about this.


<p> <hr> <p>

This example is a bit more interesting.
The following program prompts the user for an input,
and applies a simple probabilistic primality test.
Note that NTL already provides a slightly more sophisticated
prime test.

<p>
<pre>
#include &lt;NTL/ZZ.h&gt;

NTL_CLIENT

long witness(const ZZ&amp; n, const ZZ&amp; x)
{
   ZZ m, y, z;
   long j, k;

   if (x == 0) return 0;

   // compute m, k such that n-1 = 2^k * m, m odd:

   k = 1;
   m = n/2;
   while (m % 2 == 0) {
      k++;
      m /= 2;
   }

   z = PowerMod(x, m, n); // z = x^m % n
   if (z == 1) return 0;

   j = 0;
   do {
      y = z;
      z = (y*y) % n; 
      j++;
   } while (j &lt; k &amp;&amp; z != 1);

   return z != 1 || y != n-1;
}


long PrimeTest(const ZZ&amp; n, long t)
{
   if (n &lt;= 1) return 0;

   // first, perform trial division by primes up to 2000

   PrimeSeq s;  // a class for quickly generating primes in sequence
   long p;

   p = s.next();  // first prime is always 2
   while (p && p < 2000) {
      if ((n % p) == 0) return (n == p);
      p = s.next();  
   }

   // second, perform t Miller-Rabin tests

   ZZ x;
   long i;

   for (i = 0; i &lt; t; i++) {
      x = RandomBnd(n); // random number between 0 and n-1

      if (witness(n, x)) 
         return 0;
   }

   return 1;
}

int main()
{
   ZZ n;

   cout &lt;&lt; "n: ";
   cin &gt;&gt; n;

   if (PrimeTest(n, 10))
      cout &lt;&lt; n &lt;&lt; " is probably prime\n";
   else
      cout &lt;&lt; n &lt;&lt; " is composite\n";
}
</pre>
<p>

Note that in NTL, there are typically a number of ways to
compute the same thing.
For example, consider the computation of <tt>m</tt> and <tt>k</tt>
in function <tt>witness</tt>.
We could have written it thusly:

<pre>
   k = 1;
   m = n &gt;&gt; 1;
   while (!IsOdd(m)) {
      k++;
      m &gt;&gt;= 1;
   }
</pre>

It turns out that this is actually not significantly more 
efficient than the original version, because the implementation
optimizes multiplication and division by 2.

<p>

The following is more efficient:

<pre>
   k = 1;
   while (bit(n, k) == 0) k++;
   m = n &gt;&gt; k;
</pre>

As it happens, there is a built-in NTL routine that does just what we want:

<pre>
   m = n-1;
   k = MakeOdd(m);
</pre>



<p> <hr> <p>

Having seen a number of examples involving <tt>ZZ</tt>s,
let's look at the <tt>ZZ</tt> interface in a bit more detail.

<p>

<b>
Constructors, assignment, and conversions
</b>

<p>

When you declare an object of type <tt>ZZ</tt>, 
the default constructor initializes to the value <tt>0</tt>.
As we have already seen, there is an assignment operator that
allows one to copy the value of one <tt>ZZ</tt> to another.
Note that these copies (like almost all copies in NTL) are "deep",
i.e., the actual data is copied, and not just a pointer.
Of course, if the amount of space allocated by the destination
of the assignment is insufficient to hold the value of the source,
space is automatically re-allocated.

<p>
One can also assign a value of type <tt>long</tt> to a <tt>ZZ</tt>:
<pre>
   ZZ x;
   x = 1;
</pre>

<p>
Note that one cannot write
<pre>
   ZZ x = 1;  // error
</pre>
to initialize a <tt>ZZ</tt>.
As a design principle, NTL avoids implicit conversions, and unfortunately,
the only way to allow initializations like this in <tt>C++</tt>
is to define an implicit conversion operator.
Instead, one could write
<pre>
   ZZ x = to_ZZ(1);
</pre>
This is an example of one of NTL's conversion routines.
For very large constants, one can write:
<pre>
   ZZ x = to_ZZ("99999999999999999999");
</pre>
These examples illustrate conversion rountines in their 
functional forms.
The corresponding procedural forms are all called <tt>conv</tt>, e.g.,
<pre>
   ZZ x;
   conv(x, 1);
   conv(x, "99999999999999999999");
</pre>

<p>
<b>
Functionality
</b>
<p>

All of the basic arithmetic operators are supported,
including comparison, arithmetic, shift, and bit-wise logical operations.
One can mix <tt>ZZ</tt>s and <tt>long</tt>s in any expresion in
a natural way.
As was already mentioned, NTL does not support implicit type conversion;
rather, for basic operations, it simply overloads the operators
or functions in a way to achieve a kind of "promotion logic":
if one input is a <tt>ZZ</tt> and the other is a <tt>long</tt>
(or something that implicitly converts to a <tt>long</tt>, like 
an <tt>int</tt>), the <tt>long</tt> input is effectively converted
to a <tt>ZZ</tt>.
Moreover, wherever possible, the implementation does this 
as efficiently as possible, and usually avoids the creation
of a temporary <tt>ZZ</tt>.

<p>
There are also procedural versions for all the basic arithmetic
operations:
<pre>
   add, sub, negate, mul, sqr, div, rem, DivRem, 
   LeftShift, RightShift,
   bit_and, bit_or, bit_xor
</pre>

<p>
There are many other routines.
Here is a brief summary:
<ul>
<li>
<tt>GCD</tt> -- computes greatest common divisor of two integers
<li>
<tt>XGCD</tt> -- extended Euclidean algorithm
<li>
<tt>AddMod</tt>, <tt>SubMod</tt>, <tt>NegateMod</tt>, 
<tt>MulMod</tt>, <tt>SqrMod</tt>, <tt>InvMod</tt>,
<tt>PowerMod</tt> -- routines for modular arithmetic,
including inversion and exponentiation
<li>
<tt>NumBits</tt> -- length of binary representation
<li>
<tt>bit</tt> -- extract a bit
<li>
<tt>ZZFromBytes</tt>, <tt>BytesFromZZ</tt> -- 
convert between octet strings and <tt>ZZ</tt>s
<li>
<tt>RandomBnd</tt>, <tt>RandomBits</tt>, <tt>RandomLen</tt> --
routines for generating pseudo-random numbers
<li>
<tt>GenPrime</tt>, <tt>ProbPrime</tt> -- routines for generating primes
and testing primality
<li>
<tt>power</tt> -- (non-modular) exponentiation
<li>
<tt>SqrRoot</tt> -- integer part of square root
<li>
<tt>Jacobi</tt>, <tt>SqrRootMod</tt> -- Jacobi symbol and modular
square root
</ul>

<p>
Most of these functions also have pure <tt>long</tt> versions as 
well, and as usual, there are both functional and procedural
variants.

<p>
There are other functions as well.
See <a href="ZZ.txt"><tt>ZZ.txt</tt></a> for complete details.
Also see <a href="tools.txt"><tt>tools.txt</tt></a> for some basic
services provided by NTL.


<p>
<center>
<img src="arrow1.gif" alt="[Previous]" align=bottom>
 <a href="tour-examples.html"><img src="arrow2.gif" alt="[Up]" align=bottom></a> 
<a href="tour-ex2.html"> <img src="arrow3.gif" alt="[Next]" align=bottom></a>
</center>

</body>
</html>