This file is indexed.

/usr/include/NTL/mat_ZZ_p.h is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#ifndef NTL_mat_ZZ_p__H
#define NTL_mat_ZZ_p__H

#include <NTL/tools.h>
#include <NTL/matrix.h>
#include <NTL/vec_vec_ZZ_p.h>

NTL_OPEN_NNS

NTL_matrix_decl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)
NTL_io_matrix_decl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)
NTL_eq_matrix_decl(ZZ_p,vec_ZZ_p,vec_vec_ZZ_p,mat_ZZ_p)

void add(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B); 
void sub(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B); 
void negate(mat_ZZ_p& X, const mat_ZZ_p& A); 
void mul(mat_ZZ_p& X, const mat_ZZ_p& A, const mat_ZZ_p& B); 
void mul(vec_ZZ_p& x, const mat_ZZ_p& A, const vec_ZZ_p& b); 
void mul(vec_ZZ_p& x, const vec_ZZ_p& a, const mat_ZZ_p& B); 

void mul(mat_ZZ_p& X, const mat_ZZ_p& A, const ZZ_p& b);
void mul(mat_ZZ_p& X, const mat_ZZ_p& A, long b);

inline void mul(mat_ZZ_p& X, const ZZ_p& a, const mat_ZZ_p& B)
   { mul(X, B, a); }

inline void mul(mat_ZZ_p& X, long a, const mat_ZZ_p& B)
   { mul(X, B, a); }

void ident(mat_ZZ_p& X, long n); 
inline mat_ZZ_p ident_mat_ZZ_p(long n)
   { mat_ZZ_p X; ident(X, n); NTL_OPT_RETURN(mat_ZZ_p, X); }



void determinant(ZZ_p& d, const mat_ZZ_p& A);
long IsIdent(const mat_ZZ_p& A, long n);
void transpose(mat_ZZ_p& X, const mat_ZZ_p& A);
void solve(ZZ_p& d, vec_ZZ_p& X,
           const mat_ZZ_p& A, const vec_ZZ_p& b);
void inv(ZZ_p& d, mat_ZZ_p& X, const mat_ZZ_p& A);

inline void sqr(mat_ZZ_p& X, const mat_ZZ_p& A)
   { mul(X, A, A); }

inline mat_ZZ_p sqr(const mat_ZZ_p& A)
   { mat_ZZ_p X; sqr(X, A); NTL_OPT_RETURN(mat_ZZ_p, X); }

void inv(mat_ZZ_p& X, const mat_ZZ_p& A);

inline mat_ZZ_p inv(const mat_ZZ_p& A)
   { mat_ZZ_p X; inv(X, A); NTL_OPT_RETURN(mat_ZZ_p, X); }

void power(mat_ZZ_p& X, const mat_ZZ_p& A, const ZZ& e);
inline mat_ZZ_p power(const mat_ZZ_p& A, const ZZ& e)
   { mat_ZZ_p X; power(X, A, e); NTL_OPT_RETURN(mat_ZZ_p, X); }

inline void power(mat_ZZ_p& X, const mat_ZZ_p& A, long e)
   { power(X, A, ZZ_expo(e)); }
inline mat_ZZ_p power(const mat_ZZ_p& A, long e)
   { mat_ZZ_p X; power(X, A, e); NTL_OPT_RETURN(mat_ZZ_p, X); }


void diag(mat_ZZ_p& X, long n, const ZZ_p& d);
inline mat_ZZ_p diag(long n, const ZZ_p& d)
   { mat_ZZ_p X; diag(X, n, d); NTL_OPT_RETURN(mat_ZZ_p, X); }

long IsDiag(const mat_ZZ_p& A, long n, const ZZ_p& d);


long gauss(mat_ZZ_p& M);
long gauss(mat_ZZ_p& M, long w);
void image(mat_ZZ_p& X, const mat_ZZ_p& A);
void kernel(mat_ZZ_p& X, const mat_ZZ_p& A);




inline ZZ_p determinant(const mat_ZZ_p& a)
   { ZZ_p x; determinant(x, a); return x; }
// functional variant of determinant

inline mat_ZZ_p transpose(const mat_ZZ_p & a)
   { mat_ZZ_p x; transpose(x, a); NTL_OPT_RETURN(mat_ZZ_p, x); }

void clear(mat_ZZ_p& a);
// x = 0 (dimension unchanged)

long IsZero(const mat_ZZ_p& a);
// test if a is the zero matrix (any dimension)


// operator notation:

mat_ZZ_p operator+(const mat_ZZ_p& a, const mat_ZZ_p& b);
mat_ZZ_p operator-(const mat_ZZ_p& a, const mat_ZZ_p& b);
mat_ZZ_p operator*(const mat_ZZ_p& a, const mat_ZZ_p& b);

mat_ZZ_p operator-(const mat_ZZ_p& a);


// matrix/scalar multiplication:

inline mat_ZZ_p operator*(const mat_ZZ_p& a, const ZZ_p& b)
   { mat_ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(mat_ZZ_p, x); }

inline mat_ZZ_p operator*(const mat_ZZ_p& a, long b)
   { mat_ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(mat_ZZ_p, x); }

inline mat_ZZ_p operator*(const ZZ_p& a, const mat_ZZ_p& b)
   { mat_ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(mat_ZZ_p, x); }

inline mat_ZZ_p operator*(long a, const mat_ZZ_p& b)
   { mat_ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(mat_ZZ_p, x); }

// matrix/vector multiplication:

vec_ZZ_p operator*(const mat_ZZ_p& a, const vec_ZZ_p& b);

vec_ZZ_p operator*(const vec_ZZ_p& a, const mat_ZZ_p& b);




// assignment operator notation:

inline mat_ZZ_p& operator+=(mat_ZZ_p& x, const mat_ZZ_p& a)
{
   add(x, x, a);
   return x;
}   

inline mat_ZZ_p& operator-=(mat_ZZ_p& x, const mat_ZZ_p& a)
{
   sub(x, x, a);
   return x;
}   


inline mat_ZZ_p& operator*=(mat_ZZ_p& x, const mat_ZZ_p& a)
{
   mul(x, x, a);
   return x;
}   

inline mat_ZZ_p& operator*=(mat_ZZ_p& x, const ZZ_p& a)
{
   mul(x, x, a);
   return x;
}   

inline mat_ZZ_p& operator*=(mat_ZZ_p& x, long a)
{
   mul(x, x, a);
   return x;
}   
   

inline vec_ZZ_p& operator*=(vec_ZZ_p& x, const mat_ZZ_p& a)
{
   mul(x, x, a);
   return x;
}   

NTL_CLOSE_NNS



#endif