/usr/include/NTL/lzz_pEX.h is in libntl-dev 5.4.2-4.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 | #ifndef NTL_zz_pEX__H
#define NTL_zz_pEX__H
#include <NTL/vec_lzz_pE.h>
NTL_OPEN_NNS
class zz_pEX {
public:
vec_zz_pE rep;
/***************************************************************
Constructors, Destructors, and Assignment
****************************************************************/
zz_pEX()
// initial value 0
{ }
zz_pEX(INIT_SIZE_TYPE, long n) { rep.SetMaxLength(n); }
~zz_pEX() { }
void normalize();
// strip leading zeros
void SetMaxLength(long n)
// pre-allocate space for n coefficients.
// Value is unchanged
{ rep.SetMaxLength(n); }
void kill()
// free space held by this polynomial. Value becomes 0.
{ rep.kill(); }
static const zz_pEX& zero();
inline zz_pEX(long i, const zz_pE& c);
inline zz_pEX(long i, const zz_p& c);
inline zz_pEX(long i, long c);
inline zz_pEX& operator=(long a);
inline zz_pEX& operator=(const zz_p& a);
inline zz_pEX& operator=(const zz_pE& a);
zz_pEX(zz_pEX& x, INIT_TRANS_TYPE) : rep(x.rep, INIT_TRANS) { }
};
NTL_SNS istream& operator>>(NTL_SNS istream& s, zz_pEX& x);
NTL_SNS ostream& operator<<(NTL_SNS ostream& s, const zz_pEX& a);
/**********************************************************
Some utility routines
***********************************************************/
inline long deg(const zz_pEX& a) { return a.rep.length() - 1; }
// degree of a polynomial.
// note that the zero polynomial has degree -1.
const zz_pE& coeff(const zz_pEX& a, long i);
// zero if i not in range
const zz_pE& LeadCoeff(const zz_pEX& a);
// zero if a == 0
const zz_pE& ConstTerm(const zz_pEX& a);
// zero if a == 0
void SetCoeff(zz_pEX& x, long i, const zz_pE& a);
void SetCoeff(zz_pEX& x, long i, const zz_p& a);
void SetCoeff(zz_pEX& x, long i, long a);
// x[i] = a, error is raised if i < 0
inline zz_pEX::zz_pEX(long i, const zz_pE& a)
{ SetCoeff(*this, i, a); }
inline zz_pEX::zz_pEX(long i, const zz_p& a)
{ SetCoeff(*this, i, a); }
inline zz_pEX::zz_pEX(long i, long a)
{ SetCoeff(*this, i, a); }
void SetCoeff(zz_pEX& x, long i);
// x[i] = 1, error is raised if i < 0
void SetX(zz_pEX& x);
// x is set to the monomial X
long IsX(const zz_pEX& a);
// test if x = X
inline void clear(zz_pEX& x)
// x = 0
{ x.rep.SetLength(0); }
inline void set(zz_pEX& x)
// x = 1
{ x.rep.SetLength(1); set(x.rep[0]); }
inline void swap(zz_pEX& x, zz_pEX& y)
// swap x & y (only pointers are swapped)
{ swap(x.rep, y.rep); }
void random(zz_pEX& x, long n);
inline zz_pEX random_zz_pEX(long n)
{ zz_pEX x; random(x, n); NTL_OPT_RETURN(zz_pEX, x); }
// generate a random polynomial of degree < n
void trunc(zz_pEX& x, const zz_pEX& a, long m);
inline zz_pEX trunc(const zz_pEX& a, long m)
{ zz_pEX x; trunc(x, a, m); NTL_OPT_RETURN(zz_pEX, x); }
// x = a % X^m
void RightShift(zz_pEX& x, const zz_pEX& a, long n);
inline zz_pEX RightShift(const zz_pEX& a, long n)
{ zz_pEX x; RightShift(x, a, n); NTL_OPT_RETURN(zz_pEX, x); }
// x = a/X^n
void LeftShift(zz_pEX& x, const zz_pEX& a, long n);
inline zz_pEX LeftShift(const zz_pEX& a, long n)
{ zz_pEX x; LeftShift(x, a, n); NTL_OPT_RETURN(zz_pEX, x); }
// x = a*X^n
#ifndef NTL_TRANSITION
inline zz_pEX operator>>(const zz_pEX& a, long n)
{ zz_pEX x; RightShift(x, a, n); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator<<(const zz_pEX& a, long n)
{ zz_pEX x; LeftShift(x, a, n); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator<<=(zz_pEX& x, long n)
{ LeftShift(x, x, n); return x; }
inline zz_pEX& operator>>=(zz_pEX& x, long n)
{ RightShift(x, x, n); return x; }
#endif
void diff(zz_pEX& x, const zz_pEX& a);
inline zz_pEX diff(const zz_pEX& a)
{ zz_pEX x; diff(x, a); NTL_OPT_RETURN(zz_pEX, x); }
// x = derivative of a
void MakeMonic(zz_pEX& x);
void reverse(zz_pEX& c, const zz_pEX& a, long hi);
inline zz_pEX reverse(const zz_pEX& a, long hi)
{ zz_pEX x; reverse(x, a, hi); NTL_OPT_RETURN(zz_pEX, x); }
inline void reverse(zz_pEX& c, const zz_pEX& a)
{ reverse(c, a, deg(a)); }
inline zz_pEX reverse(const zz_pEX& a)
{ zz_pEX x; reverse(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline void VectorCopy(vec_zz_pE& x, const zz_pEX& a, long n)
{ VectorCopy(x, a.rep, n); }
inline vec_zz_pE VectorCopy(const zz_pEX& a, long n)
{ return VectorCopy(a.rep, n); }
/*******************************************************************
conversion routines
********************************************************************/
void conv(zz_pEX& x, long a);
void conv(zz_pEX& x, const ZZ& a);
void conv(zz_pEX& x, const zz_p& a);
void conv(zz_pEX& x, const zz_pX& a);
void conv(zz_pEX& x, const zz_pE& a);
void conv(zz_pEX& x, const vec_zz_pE& a);
inline zz_pEX to_zz_pEX(long a)
{ zz_pEX x; conv(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX to_zz_pEX(const ZZ& a)
{ zz_pEX x; conv(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX to_zz_pEX(const zz_p& a)
{ zz_pEX x; conv(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX to_zz_pEX(const zz_pX& a)
{ zz_pEX x; conv(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX to_zz_pEX(const zz_pE& a)
{ zz_pEX x; conv(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX to_zz_pEX(const vec_zz_pE& a)
{ zz_pEX x; conv(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& zz_pEX::operator=(long a)
{ conv(*this, a); return *this; }
inline zz_pEX& zz_pEX::operator=(const zz_p& a)
{ conv(*this, a); return *this; }
inline zz_pEX& zz_pEX::operator=(const zz_pE& a)
{ conv(*this, a); return *this; }
/*************************************************************
Comparison
**************************************************************/
long IsZero(const zz_pEX& a);
long IsOne(const zz_pEX& a);
inline long operator==(const zz_pEX& a, const zz_pEX& b)
{ return a.rep == b.rep; }
long operator==(const zz_pEX& a, long b);
long operator==(const zz_pEX& a, const zz_p& b);
long operator==(const zz_pEX& a, const zz_pE& b);
inline long operator==(long a, const zz_pEX& b)
{ return (b == a); }
inline long operator==(const zz_p& a, const zz_pEX& b)
{ return (b == a); }
inline long operator==(const zz_pE& a, const zz_pEX& b)
{ return (b == a); }
inline long operator!=(const zz_pEX& a, const zz_pEX& b)
{ return !(a == b); }
inline long operator!=(const zz_pEX& a, long b)
{ return !(a == b); }
inline long operator!=(const zz_pEX& a, const zz_p& b)
{ return !(a == b); }
inline long operator!=(const zz_pEX& a, const zz_pE& b)
{ return !(a == b); }
inline long operator!=(const long a, const zz_pEX& b)
{ return !(a == b); }
inline long operator!=(const zz_p& a, const zz_pEX& b)
{ return !(a == b); }
inline long operator!=(const zz_pE& a, const zz_pEX& b)
{ return !(a == b); }
/***************************************************************
Addition
****************************************************************/
void add(zz_pEX& x, const zz_pEX& a, const zz_pEX& b);
void sub(zz_pEX& x, const zz_pEX& a, const zz_pEX& b);
void negate(zz_pEX& x, const zz_pEX& a);
// scalar versions
void add(zz_pEX & x, const zz_pEX& a, long b);
void add(zz_pEX & x, const zz_pEX& a, const zz_p& b);
void add(zz_pEX & x, const zz_pEX& a, const zz_pE& b);
inline void add(zz_pEX& x, const zz_pE& a, const zz_pEX& b)
{ add(x, b, a); }
inline void add(zz_pEX& x, const zz_p& a, const zz_pEX& b)
{ add(x, b, a); }
inline void add(zz_pEX& x, long a, const zz_pEX& b)
{ add(x, b, a); }
void sub(zz_pEX & x, const zz_pEX& a, long b);
void sub(zz_pEX & x, const zz_pEX& a, const zz_p& b);
void sub(zz_pEX & x, const zz_pEX& a, const zz_pE& b);
void sub(zz_pEX& x, const zz_pE& a, const zz_pEX& b);
void sub(zz_pEX& x, const zz_p& a, const zz_pEX& b);
void sub(zz_pEX& x, long a, const zz_pEX& b);
inline zz_pEX operator+(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator+(const zz_pEX& a, const zz_pE& b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator+(const zz_pEX& a, const zz_p& b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator+(const zz_pEX& a, long b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator+(const zz_pE& a, const zz_pEX& b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator+(const zz_p& a, const zz_pEX& b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator+(long a, const zz_pEX& b)
{ zz_pEX x; add(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, const zz_pE& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, const zz_p& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pEX& a, long b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_pE& a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(const zz_p& a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator-(long a, const zz_pEX& b)
{ zz_pEX x; sub(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator+=(zz_pEX& x, const zz_pEX& b)
{ add(x, x, b); return x; }
inline zz_pEX& operator+=(zz_pEX& x, const zz_pE& b)
{ add(x, x, b); return x; }
inline zz_pEX& operator+=(zz_pEX& x, const zz_p& b)
{ add(x, x, b); return x; }
inline zz_pEX& operator+=(zz_pEX& x, long b)
{ add(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, const zz_pEX& b)
{ sub(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, const zz_pE& b)
{ sub(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, const zz_p& b)
{ sub(x, x, b); return x; }
inline zz_pEX& operator-=(zz_pEX& x, long b)
{ sub(x, x, b); return x; }
inline zz_pEX operator-(const zz_pEX& a)
{ zz_pEX x; negate(x, a); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator++(zz_pEX& x) { add(x, x, 1); return x; }
inline void operator++(zz_pEX& x, int) { add(x, x, 1); }
inline zz_pEX& operator--(zz_pEX& x) { sub(x, x, 1); return x; }
inline void operator--(zz_pEX& x, int) { sub(x, x, 1); }
/*****************************************************************
Multiplication
******************************************************************/
void mul(zz_pEX& x, const zz_pEX& a, const zz_pEX& b);
// x = a * b
void sqr(zz_pEX& x, const zz_pEX& a);
inline zz_pEX sqr(const zz_pEX& a)
{ zz_pEX x; sqr(x, a); NTL_OPT_RETURN(zz_pEX, x); }
// x = a^2
void mul(zz_pEX & x, const zz_pEX& a, long b);
void mul(zz_pEX & x, const zz_pEX& a, const zz_p& b);
void mul(zz_pEX & x, const zz_pEX& a, const zz_pE& b);
inline void mul(zz_pEX& x, long a, const zz_pEX& b)
{ mul(x, b, a); }
inline void mul(zz_pEX& x, const zz_p& a, const zz_pEX& b)
{ mul(x, b, a); }
inline void mul(zz_pEX& x, const zz_pE& a, const zz_pEX& b)
{ mul(x, b, a); }
void MulTrunc(zz_pEX& x, const zz_pEX& a, const zz_pEX& b, long n);
inline zz_pEX MulTrunc(const zz_pEX& a, const zz_pEX& b, long n)
{ zz_pEX x; MulTrunc(x, a, b, n); NTL_OPT_RETURN(zz_pEX, x); }
// x = a * b % X^n
void SqrTrunc(zz_pEX& x, const zz_pEX& a, long n);
inline zz_pEX SqrTrunc(const zz_pEX& a, long n)
{ zz_pEX x; SqrTrunc(x, a, n); NTL_OPT_RETURN(zz_pEX, x); }
// x = a*a % X^n
inline zz_pEX operator*(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pEX& a, const zz_pE& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pEX& a, const zz_p& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pEX& a, long b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_pE& a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(const zz_p& a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator*(long a, const zz_pEX& b)
{ zz_pEX x; mul(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator*=(zz_pEX& x, const zz_pEX& b)
{ mul(x, x, b); return x; }
inline zz_pEX& operator*=(zz_pEX& x, const zz_pE& b)
{ mul(x, x, b); return x; }
inline zz_pEX& operator*=(zz_pEX& x, const zz_p& b)
{ mul(x, x, b); return x; }
inline zz_pEX& operator*=(zz_pEX& x, long b)
{ mul(x, x, b); return x; }
void power(zz_pEX& x, const zz_pEX& a, long e);
inline zz_pEX power(const zz_pEX& a, long e)
{ zz_pEX x; power(x, a, e); NTL_OPT_RETURN(zz_pEX, x); }
/*************************************************************
Division
**************************************************************/
void DivRem(zz_pEX& q, zz_pEX& r, const zz_pEX& a, const zz_pEX& b);
// q = a/b, r = a%b
void div(zz_pEX& q, const zz_pEX& a, const zz_pEX& b);
void div(zz_pEX& q, const zz_pEX& a, const zz_pE& b);
void div(zz_pEX& q, const zz_pEX& a, const zz_p& b);
void div(zz_pEX& q, const zz_pEX& a, long b);
// q = a/b
void rem(zz_pEX& r, const zz_pEX& a, const zz_pEX& b);
// r = a%b
long divide(zz_pEX& q, const zz_pEX& a, const zz_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
long divide(const zz_pEX& a, const zz_pEX& b);
// if b | a, sets q = a/b and returns 1; otherwise returns 0
void InvTrunc(zz_pEX& x, const zz_pEX& a, long m);
inline zz_pEX InvTrunc(const zz_pEX& a, long m)
{ zz_pEX x; InvTrunc(x, a, m); NTL_OPT_RETURN(zz_pEX, x); }
// computes x = a^{-1} % X^m
// constant term must be invertible
inline zz_pEX operator/(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator/(const zz_pEX& a, const zz_pE& b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator/(const zz_pEX& a, const zz_p& b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator/(const zz_pEX& a, long b)
{ zz_pEX x; div(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator/=(zz_pEX& x, const zz_pEX& b)
{ div(x, x, b); return x; }
inline zz_pEX& operator/=(zz_pEX& x, const zz_pE& b)
{ div(x, x, b); return x; }
inline zz_pEX& operator/=(zz_pEX& x, const zz_p& b)
{ div(x, x, b); return x; }
inline zz_pEX& operator/=(zz_pEX& x, long b)
{ div(x, x, b); return x; }
inline zz_pEX operator%(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; rem(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator%=(zz_pEX& x, const zz_pEX& b)
{ rem(x, x, b); return x; }
/***********************************************************
GCD's
************************************************************/
void GCD(zz_pEX& x, const zz_pEX& a, const zz_pEX& b);
inline zz_pEX GCD(const zz_pEX& a, const zz_pEX& b)
{ zz_pEX x; GCD(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
// x = GCD(a, b), x is always monic (or zero if a==b==0).
void XGCD(zz_pEX& d, zz_pEX& s, zz_pEX& t, const zz_pEX& a, const zz_pEX& b);
// d = gcd(a,b), a s + b t = d
/*************************************************************
Modular Arithmetic without pre-conditioning
**************************************************************/
// arithmetic mod f.
// all inputs and outputs are polynomials of degree less than deg(f).
// ASSUMPTION: f is assumed monic, and deg(f) > 0.
// NOTE: if you want to do many computations with a fixed f,
// use the zz_pEXModulus data structure and associated routines below.
void MulMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& b, const zz_pEX& f);
inline zz_pEX MulMod(const zz_pEX& a, const zz_pEX& b, const zz_pEX& f)
{ zz_pEX x; MulMod(x, a, b, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = (a * b) % f
void SqrMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pEX SqrMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pEX x; SqrMod(x, a, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = a^2 % f
void MulByXMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pEX MulByXMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pEX x; MulByXMod(x, a, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = (a * X) mod f
void InvMod(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pEX InvMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pEX x; InvMod(x, a, f); NTL_OPT_RETURN(zz_pEX, x); }
// x = a^{-1} % f, error is a is not invertible
long InvModStatus(zz_pEX& x, const zz_pEX& a, const zz_pEX& f);
// if (a, f) = 1, returns 0 and sets x = a^{-1} % f
// otherwise, returns 1 and sets x = (a, f)
/******************************************************************
Modular Arithmetic with Pre-conditioning
*******************************************************************/
// If you need to do a lot of arithmetic modulo a fixed f,
// build zz_pEXModulus F for f. This pre-computes information about f
// that speeds up the computation a great deal.
class zz_pEXModulus {
public:
zz_pEXModulus();
~zz_pEXModulus();
zz_pEXModulus(const zz_pEX& ff);
zz_pEX f; // the modulus
operator const zz_pEX& () const { return f; }
const zz_pEX& val() const { return f; }
long n; // deg(f)
long method;
zz_pEX h0;
zz_pE hlc;
zz_pEX f0;
vec_zz_pE tracevec; // mutable
};
inline long deg(const zz_pEXModulus& F) { return F.n; }
void build(zz_pEXModulus& F, const zz_pEX& f);
void rem(zz_pEX& r, const zz_pEX& a, const zz_pEXModulus& F);
void DivRem(zz_pEX& q, zz_pEX& r, const zz_pEX& a, const zz_pEXModulus& F);
void div(zz_pEX& q, const zz_pEX& a, const zz_pEXModulus& F);
void MulMod(zz_pEX& c, const zz_pEX& a, const zz_pEX& b,
const zz_pEXModulus& F);
inline zz_pEX MulMod(const zz_pEX& a, const zz_pEX& b,
const zz_pEXModulus& F)
{ zz_pEX x; MulMod(x, a, b, F); NTL_OPT_RETURN(zz_pEX, x); }
void SqrMod(zz_pEX& c, const zz_pEX& a, const zz_pEXModulus& F);
inline zz_pEX SqrMod(const zz_pEX& a, const zz_pEXModulus& F)
{ zz_pEX x; SqrMod(x, a, F); NTL_OPT_RETURN(zz_pEX, x); }
void PowerMod(zz_pEX& h, const zz_pEX& g, const ZZ& e, const zz_pEXModulus& F);
inline void PowerMod(zz_pEX& h, const zz_pEX& g, long e,
const zz_pEXModulus& F)
{ PowerMod(h, g, ZZ_expo(e), F); }
inline zz_pEX PowerMod(const zz_pEX& g, const ZZ& e,
const zz_pEXModulus& F)
{ zz_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX PowerMod(const zz_pEX& g, long e, const zz_pEXModulus& F)
{ zz_pEX x; PowerMod(x, g, e, F); NTL_OPT_RETURN(zz_pEX, x); }
void PowerXMod(zz_pEX& hh, const ZZ& e, const zz_pEXModulus& F);
inline void PowerXMod(zz_pEX& h, long e, const zz_pEXModulus& F)
{ PowerXMod(h, ZZ_expo(e), F); }
inline zz_pEX PowerXMod(const ZZ& e, const zz_pEXModulus& F)
{ zz_pEX x; PowerXMod(x, e, F); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX PowerXMod(long e, const zz_pEXModulus& F)
{ zz_pEX x; PowerXMod(x, e, F); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX operator%(const zz_pEX& a, const zz_pEXModulus& F)
{ zz_pEX x; rem(x, a, F); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator%=(zz_pEX& x, const zz_pEXModulus& F)
{ rem(x, x, F); return x; }
inline zz_pEX operator/(const zz_pEX& a, const zz_pEXModulus& F)
{ zz_pEX x; div(x, a, F); NTL_OPT_RETURN(zz_pEX, x); }
inline zz_pEX& operator/=(zz_pEX& x, const zz_pEXModulus& F)
{ div(x, x, F); return x; }
/*****************************************************************
vectors of zz_pEX's
*****************************************************************/
NTL_vector_decl(zz_pEX,vec_zz_pEX)
NTL_eq_vector_decl(zz_pEX,vec_zz_pEX)
NTL_io_vector_decl(zz_pEX,vec_zz_pEX)
/*******************************************************
Evaluation and related problems
********************************************************/
void BuildFromRoots(zz_pEX& x, const vec_zz_pE& a);
inline zz_pEX BuildFromRoots(const vec_zz_pE& a)
{ zz_pEX x; BuildFromRoots(x, a); NTL_OPT_RETURN(zz_pEX, x); }
// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()
void eval(zz_pE& b, const zz_pEX& f, const zz_pE& a);
inline zz_pE eval(const zz_pEX& f, const zz_pE& a)
{ zz_pE x; eval(x, f, a); NTL_OPT_RETURN(zz_pE, x); }
// b = f(a)
void eval(vec_zz_pE& b, const zz_pEX& f, const vec_zz_pE& a);
inline vec_zz_pE eval(const zz_pEX& f, const vec_zz_pE& a)
{ vec_zz_pE x; eval(x, f, a); NTL_OPT_RETURN(vec_zz_pE, x); }
// b[i] = f(a[i])
inline void eval(zz_pE& b, const zz_pX& f, const zz_pE& a)
{ conv(b, CompMod(f, rep(a), zz_pE::modulus())); }
inline zz_pE eval(const zz_pX& f, const zz_pE& a)
{ zz_pE x; eval(x, f, a); NTL_OPT_RETURN(zz_pE, x); }
// b = f(a)
void interpolate(zz_pEX& f, const vec_zz_pE& a, const vec_zz_pE& b);
inline zz_pEX interpolate(const vec_zz_pE& a, const vec_zz_pE& b)
{ zz_pEX x; interpolate(x, a, b); NTL_OPT_RETURN(zz_pEX, x); }
// computes f such that f(a[i]) = b[i]
/**********************************************************
Modular Composition and Minimal Polynomials
***********************************************************/
void CompMod(zz_pEX& x, const zz_pEX& g, const zz_pEX& h, const zz_pEXModulus& F);
inline zz_pEX
CompMod(const zz_pEX& g, const zz_pEX& h, const zz_pEXModulus& F)
{ zz_pEX x; CompMod(x, g, h, F); NTL_OPT_RETURN(zz_pEX, x); }
// x = g(h) mod f
void Comp2Mod(zz_pEX& x1, zz_pEX& x2, const zz_pEX& g1, const zz_pEX& g2,
const zz_pEX& h, const zz_pEXModulus& F);
// xi = gi(h) mod f (i=1,2)
void Comp3Mod(zz_pEX& x1, zz_pEX& x2, zz_pEX& x3,
const zz_pEX& g1, const zz_pEX& g2, const zz_pEX& g3,
const zz_pEX& h, const zz_pEXModulus& F);
// xi = gi(h) mod f (i=1..3)
// The routine build (see below) which is implicitly called
// by the various compose and UpdateMap routines builds a table
// of polynomials.
// If zz_pEXArgBound > 0, then the table is limited in
// size to approximamtely that many KB.
// If zz_pEXArgBound <= 0, then it is ignored, and space is allocated
// so as to maximize speed.
// Initially, zz_pEXArgBound = 0.
// If a single h is going to be used with many g's
// then you should build a zz_pEXArgument for h,
// and then use the compose routine below.
// build computes and stores h, h^2, ..., h^m mod f.
// After this pre-computation, composing a polynomial of degree
// roughly n with h takes n/m multiplies mod f, plus n^2
// scalar multiplies.
// Thus, increasing m increases the space requirement and the pre-computation
// time, but reduces the composition time.
// If zz_pEXArgBound > 0, a table of size less than m may be built.
struct zz_pEXArgument {
vec_zz_pEX H;
};
extern long zz_pEXArgBound;
void build(zz_pEXArgument& H, const zz_pEX& h, const zz_pEXModulus& F, long m);
// m must be > 0, otherwise an error is raised
void CompMod(zz_pEX& x, const zz_pEX& g, const zz_pEXArgument& H,
const zz_pEXModulus& F);
inline zz_pEX
CompMod(const zz_pEX& g, const zz_pEXArgument& H, const zz_pEXModulus& F)
{ zz_pEX x; CompMod(x, g, H, F); NTL_OPT_RETURN(zz_pEX, x); }
void MinPolySeq(zz_pEX& h, const vec_zz_pE& a, long m);
inline zz_pEX MinPolySeq(const vec_zz_pE& a, long m)
{ zz_pEX x; MinPolySeq(x, a, m); NTL_OPT_RETURN(zz_pEX, x); }
void MinPolyMod(zz_pEX& hh, const zz_pEX& g, const zz_pEXModulus& F);
inline zz_pEX MinPolyMod(const zz_pEX& g, const zz_pEXModulus& F)
{ zz_pEX x; MinPolyMod(x, g, F); NTL_OPT_RETURN(zz_pEX, x); }
void MinPolyMod(zz_pEX& hh, const zz_pEX& g, const zz_pEXModulus& F, long m);
inline zz_pEX MinPolyMod(const zz_pEX& g, const zz_pEXModulus& F, long m)
{ zz_pEX x; MinPolyMod(x, g, F, m); NTL_OPT_RETURN(zz_pEX, x); }
void ProbMinPolyMod(zz_pEX& hh, const zz_pEX& g, const zz_pEXModulus& F);
inline zz_pEX ProbMinPolyMod(const zz_pEX& g, const zz_pEXModulus& F)
{ zz_pEX x; ProbMinPolyMod(x, g, F); NTL_OPT_RETURN(zz_pEX, x); }
void ProbMinPolyMod(zz_pEX& hh, const zz_pEX& g, const zz_pEXModulus& F, long m);
inline zz_pEX ProbMinPolyMod(const zz_pEX& g, const zz_pEXModulus& F, long m)
{ zz_pEX x; ProbMinPolyMod(x, g, F, m); NTL_OPT_RETURN(zz_pEX, x); }
void IrredPolyMod(zz_pEX& h, const zz_pEX& g, const zz_pEXModulus& F);
inline zz_pEX IrredPolyMod(const zz_pEX& g, const zz_pEXModulus& F)
{ zz_pEX x; IrredPolyMod(x, g, F); NTL_OPT_RETURN(zz_pEX, x); }
void IrredPolyMod(zz_pEX& h, const zz_pEX& g, const zz_pEXModulus& F, long m);
inline zz_pEX IrredPolyMod(const zz_pEX& g, const zz_pEXModulus& F, long m)
{ zz_pEX x; IrredPolyMod(x, g, F, m); NTL_OPT_RETURN(zz_pEX, x); }
struct zz_pEXTransMultiplier {
zz_pEX f0, fbi, b;
long shamt, shamt_fbi, shamt_b;
};
void build(zz_pEXTransMultiplier& B, const zz_pEX& b, const zz_pEXModulus& F);
void TransMulMod(zz_pEX& x, const zz_pEX& a, const zz_pEXTransMultiplier& B,
const zz_pEXModulus& F);
void UpdateMap(vec_zz_pE& x, const vec_zz_pE& a,
const zz_pEXTransMultiplier& B, const zz_pEXModulus& F);
inline vec_zz_pE UpdateMap(const vec_zz_pE& a,
const zz_pEXTransMultiplier& B, const zz_pEXModulus& F)
{ vec_zz_pE x; UpdateMap(x, a, B, F); NTL_OPT_RETURN(vec_zz_pE, x); }
void ProjectPowers(vec_zz_pE& x, const vec_zz_pE& a, long k,
const zz_pEXArgument& H, const zz_pEXModulus& F);
inline vec_zz_pE ProjectPowers(const vec_zz_pE& a, long k,
const zz_pEXArgument& H, const zz_pEXModulus& F)
{ vec_zz_pE x; ProjectPowers(x, a, k, H, F); NTL_OPT_RETURN(vec_zz_pE, x); }
void ProjectPowers(vec_zz_pE& x, const vec_zz_pE& a, long k, const zz_pEX& h,
const zz_pEXModulus& F);
inline vec_zz_pE ProjectPowers(const vec_zz_pE& a, long k,
const zz_pEX& H, const zz_pEXModulus& F)
{ vec_zz_pE x; ProjectPowers(x, a, k, H, F); NTL_OPT_RETURN(vec_zz_pE, x); }
inline void project(zz_pE& x, const vec_zz_pE& a, const zz_pEX& b)
{ InnerProduct(x, a, b.rep); }
inline zz_pE project(const vec_zz_pE& a, const zz_pEX& b)
{ zz_pE x; InnerProduct(x, a, b.rep); NTL_OPT_RETURN(zz_pE, x); }
/*****************************************************************
modular composition and minimal polynonomials
in towers
******************************************************************/
// composition
void CompTower(zz_pEX& x, const zz_pX& g, const zz_pEXArgument& A,
const zz_pEXModulus& F);
inline zz_pEX CompTower(const zz_pX& g, const zz_pEXArgument& A,
const zz_pEXModulus& F)
{ zz_pEX x; CompTower(x, g, A, F); NTL_OPT_RETURN(zz_pEX, x); }
void CompTower(zz_pEX& x, const zz_pX& g, const zz_pEX& h,
const zz_pEXModulus& F);
inline zz_pEX CompTower(const zz_pX& g, const zz_pEX& h,
const zz_pEXModulus& F)
{ zz_pEX x; CompTower(x, g, h, F); NTL_OPT_RETURN(zz_pEX, x); }
// prob min poly
void ProbMinPolyTower(zz_pX& h, const zz_pEX& g, const zz_pEXModulus& F,
long m);
inline zz_pX ProbMinPolyTower(const zz_pEX& g, const zz_pEXModulus& F,
long m)
{ zz_pX x; ProbMinPolyTower(x, g, F, m); NTL_OPT_RETURN(zz_pX, x); }
inline void ProbMinPolyTower(zz_pX& h, const zz_pEX& g,
const zz_pEXModulus& F)
{ ProbMinPolyTower(h, g, F, deg(F)*zz_pE::degree()); }
inline zz_pX ProbMinPolyTower(const zz_pEX& g, const zz_pEXModulus& F)
{ zz_pX x; ProbMinPolyTower(x, g, F); NTL_OPT_RETURN(zz_pX, x); }
// min poly
void MinPolyTower(zz_pX& h, const zz_pEX& g, const zz_pEXModulus& F,
long m);
inline zz_pX MinPolyTower(const zz_pEX& g, const zz_pEXModulus& F,
long m)
{ zz_pX x; MinPolyTower(x, g, F, m); NTL_OPT_RETURN(zz_pX, x); }
inline void MinPolyTower(zz_pX& h, const zz_pEX& g,
const zz_pEXModulus& F)
{ MinPolyTower(h, g, F, deg(F)*zz_pE::degree()); }
inline zz_pX MinPolyTower(const zz_pEX& g, const zz_pEXModulus& F)
{ zz_pX x; MinPolyTower(x, g, F); NTL_OPT_RETURN(zz_pX, x); }
// irred poly
void IrredPolyTower(zz_pX& h, const zz_pEX& g, const zz_pEXModulus& F,
long m);
inline zz_pX IrredPolyTower(const zz_pEX& g, const zz_pEXModulus& F,
long m)
{ zz_pX x; IrredPolyTower(x, g, F, m); NTL_OPT_RETURN(zz_pX, x); }
inline void IrredPolyTower(zz_pX& h, const zz_pEX& g,
const zz_pEXModulus& F)
{ IrredPolyTower(h, g, F, deg(F)*zz_pE::degree()); }
inline zz_pX IrredPolyTower(const zz_pEX& g, const zz_pEXModulus& F)
{ zz_pX x; IrredPolyTower(x, g, F); NTL_OPT_RETURN(zz_pX, x); }
/*****************************************************************
Traces, norms, resultants
******************************************************************/
void TraceVec(vec_zz_pE& S, const zz_pEX& f);
inline vec_zz_pE TraceVec(const zz_pEX& f)
{ vec_zz_pE x; TraceVec(x, f); NTL_OPT_RETURN(vec_zz_pE, x); }
void TraceMod(zz_pE& x, const zz_pEX& a, const zz_pEXModulus& F);
inline zz_pE TraceMod(const zz_pEX& a, const zz_pEXModulus& F)
{ zz_pE x; TraceMod(x, a, F); NTL_OPT_RETURN(zz_pE, x); }
void TraceMod(zz_pE& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pE TraceMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pE x; TraceMod(x, a, f); NTL_OPT_RETURN(zz_pE, x); }
void NormMod(zz_pE& x, const zz_pEX& a, const zz_pEX& f);
inline zz_pE NormMod(const zz_pEX& a, const zz_pEX& f)
{ zz_pE x; NormMod(x, a, f); NTL_OPT_RETURN(zz_pE, x); }
void resultant(zz_pE& rres, const zz_pEX& a, const zz_pEX& b);
inline zz_pE resultant(const zz_pEX& a, const zz_pEX& b)
{ zz_pE x; resultant(x, a, b); NTL_OPT_RETURN(zz_pE, x); }
NTL_CLOSE_NNS
#endif
|