This file is indexed.

/usr/include/NTL/lzz_p.h is in libntl-dev 5.4.2-4.1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#ifndef NTL_zz_p__H
#define NTL_zz_p__H

#include <NTL/ZZ.h>
#include <NTL/FFT.h>

NTL_OPEN_NNS


class zz_pInfoT {
private:
   zz_pInfoT();                      // disabled
   zz_pInfoT(const zz_pInfoT&);  // disabled
   void operator=(const zz_pInfoT&); // disabled
public:
   zz_pInfoT(long NewP, long maxroot);
   zz_pInfoT(long Index);
   ~zz_pInfoT();

   long ref_count;

   long p;
   double pinv;

   long index;        // index >= 0 means we are directly using
                     // an FFT prime

   long PrimeCnt;     // 0 for FFT prime;  otherwise same as NumPrimes
                     // used for establishing crossover points

   long NumPrimes;

   long MaxRoot;

   long MinusMModP;  //  -M mod p, M = product of primes

   // the following arrays are indexed 0..NumPrimes-1
   // q = FFTPrime[i]


   long *CoeffModP;    // coeff mod p

   double *x;          // u/q, where u = (M/q)^{-1} mod q
   long *u;            // u, as above
};

extern zz_pInfoT *zz_pInfo;  // current modulus, initially null



class zz_pContext {
private:
zz_pInfoT *ptr;

public:
void save();
void restore() const;

zz_pContext() { ptr = 0; }
zz_pContext(long p, long maxroot=NTL_FFTMaxRoot);
zz_pContext(INIT_FFT_TYPE, long index);

zz_pContext(const zz_pContext&); 

zz_pContext& operator=(const zz_pContext&); 

~zz_pContext();


};


class zz_pBak {
private:
long MustRestore;
zz_pInfoT *ptr;

zz_pBak(const zz_pBak&); // disabled
void operator=(const zz_pBak&); // disabled

public:
void save();
void restore();

zz_pBak() { MustRestore = 0; ptr = 0; }

~zz_pBak();


};

#define NTL_zz_pRegister(x) zz_p x


class zz_p {
public:

long _zz_p__rep;


static void init(long NewP, long maxroot=NTL_FFTMaxRoot);
static void FFTInit(long index);



// ****** constructors and assignment

zz_p() { _zz_p__rep = 0; }

zz_p(const zz_p& a) :  _zz_p__rep(a._zz_p__rep) { }  

~zz_p() { } 

zz_p& operator=(const zz_p& a) { _zz_p__rep = a._zz_p__rep; return *this; }

inline zz_p& operator=(long a);

// a loop-hole for direct access to _zz_p__rep
long& LoopHole() { return _zz_p__rep; }

static long modulus() { return zz_pInfo->p; }
static zz_p zero() { return zz_p(); }
static double ModulusInverse() { return zz_pInfo->pinv; }
static long PrimeCnt() { return zz_pInfo->PrimeCnt; }


static long storage() { return sizeof(long); }

zz_p(long a, INIT_LOOP_HOLE_TYPE) { _zz_p__rep = a; }

};

zz_p to_zz_p(long a);
void conv(zz_p& x, long a);

inline zz_p& zz_p::operator=(long a) { conv(*this, a); return *this; }

zz_p to_zz_p(const ZZ& a);
void conv(zz_p& x, const ZZ& a);


// read-only access to _zz_p__representation
inline long rep(zz_p a) { return a._zz_p__rep; }

inline void clear(zz_p& x)
// x = 0
   { x._zz_p__rep = 0; }

inline void set(zz_p& x)
// x = 1
   { x._zz_p__rep = 1; }

inline void swap(zz_p& x, zz_p& y)
// swap x and y

   { long t;  t = x._zz_p__rep; x._zz_p__rep = y._zz_p__rep; y._zz_p__rep = t; }

// ****** addition

inline void add(zz_p& x, zz_p a, zz_p b)
// x = a + b

   { x._zz_p__rep = AddMod(a._zz_p__rep, b._zz_p__rep, zz_p::modulus()); }

inline void sub(zz_p& x, zz_p a, zz_p b)
// x = a - b

   { x._zz_p__rep = SubMod(a._zz_p__rep, b._zz_p__rep, zz_p::modulus()); }


inline void negate(zz_p& x, zz_p a)
// x = -a

   { x._zz_p__rep = SubMod(0, a._zz_p__rep, zz_p::modulus()); }

// scalar versions

inline void add(zz_p& x, zz_p a, long b) { add(x, a, to_zz_p(b)); }
inline void add(zz_p& x, long a, zz_p b) { add(x, to_zz_p(a), b); }

inline void sub(zz_p& x, zz_p a, long b) { sub(x, a, to_zz_p(b)); }
inline void sub(zz_p& x, long a, zz_p b) { sub(x, to_zz_p(a), b); }

inline zz_p operator+(zz_p a, zz_p b)
    { zz_p x; add(x, a, b); return x; }

inline zz_p operator+(zz_p a, long b)
    { zz_p x; add(x, a, b); return x; }

inline zz_p operator+(long a, zz_p b)
    { zz_p x; add(x, a, b); return x; }

inline zz_p operator-(zz_p a, zz_p b)
    { zz_p x; sub(x, a, b); return x; }

inline zz_p operator-(zz_p a, long b)
    { zz_p x; sub(x, a, b); return x; }

inline zz_p operator-(long a, zz_p b)
    { zz_p x; sub(x, a, b); return x; }



inline zz_p operator-(zz_p a)
   { zz_p x; negate(x, a); return x; }



inline zz_p& operator+=(zz_p& x, zz_p b)
   { add(x, x, b); return x; }

inline zz_p& operator+=(zz_p& x, long b)
   { add(x, x, b); return x; }



inline zz_p& operator-=(zz_p& x, zz_p b)
   { sub(x, x, b); return x; }

inline zz_p& operator-=(zz_p& x, long b)
   { sub(x, x, b); return x; }

inline zz_p& operator++(zz_p& x) { add(x, x, 1); return x; }
inline void operator++(zz_p& x, int) { add(x, x, 1); }
inline zz_p& operator--(zz_p& x) { sub(x, x, 1); return x; }
inline void operator--(zz_p& x, int) { sub(x, x, 1); }

// ****** multiplication

inline void mul(zz_p& x, zz_p a, zz_p b)
// x = a*b

   { x._zz_p__rep = MulMod(a._zz_p__rep, b._zz_p__rep, zz_p::modulus(), zz_p::ModulusInverse()); }

inline void mul(zz_p& x, zz_p a, long b) { mul(x, a, to_zz_p(b)); }
inline void mul(zz_p& x, long a, zz_p b) { mul(x, to_zz_p(a), b); }

inline zz_p operator*(zz_p a, zz_p b)
    { zz_p x; mul(x, a, b); return x; }

inline zz_p operator*(zz_p a, long b)
    { zz_p x; mul(x, a, b); return x; }

inline zz_p operator*(long a, zz_p b)
    { zz_p x; mul(x, a, b); return x; }


inline zz_p& operator*=(zz_p& x, zz_p b)
   { mul(x, x, b); return x; }

inline zz_p& operator*=(zz_p& x, long b)
   { mul(x, x, b); return x; }



inline void sqr(zz_p& x, zz_p a)
// x = a^2

   { x._zz_p__rep = MulMod(a._zz_p__rep, a._zz_p__rep, zz_p::modulus(), zz_p::ModulusInverse()); }

inline zz_p sqr(zz_p a)
   { zz_p x; sqr(x, a); return x; }



// ****** division

inline void div(zz_p& x, zz_p a, zz_p b)
// x = a/b

   { x._zz_p__rep = MulMod(a._zz_p__rep, InvMod(b._zz_p__rep, zz_p::modulus()), zz_p::modulus(),
                    zz_p::ModulusInverse()); }

inline void inv(zz_p& x, zz_p a)
// x = 1/a

   { x._zz_p__rep = InvMod(a._zz_p__rep, zz_p::modulus()); }

inline zz_p inv(zz_p a)
   { zz_p x; inv(x, a); return x; }

inline void div(zz_p& x, zz_p a, long b) { div(x, a, to_zz_p(b)); }
inline void div(zz_p& x, long a, zz_p b) { div(x, to_zz_p(a), b); }

inline zz_p operator/(zz_p a, zz_p b)
    { zz_p x; div(x, a, b); return x; }

inline zz_p operator/(zz_p a, long b)
    { zz_p x; div(x, a, b); return x; }

inline zz_p operator/(long a, zz_p b)
    { zz_p x; div(x, a, b); return x; }


inline zz_p& operator/=(zz_p& x, zz_p b)
   { div(x, x, b); return x; }

inline zz_p& operator/=(zz_p& x, long b)
   { div(x, x, b); return x; }


// ****** exponentiation

inline void power(zz_p& x, zz_p a, long e)
// x = a^e

   { x._zz_p__rep = PowerMod(a._zz_p__rep, e, zz_p::modulus()); }

inline zz_p power(zz_p a, long e)
   { zz_p x; power(x, a, e); return x; }

// ****** comparison

inline long IsZero(zz_p a)
   { return a._zz_p__rep == 0; }

inline long IsOne(zz_p a)
   { return a._zz_p__rep == 1; }

inline long operator==(zz_p a, zz_p b)
   { return a._zz_p__rep == b._zz_p__rep; }

inline long operator!=(zz_p a, zz_p b)
   { return !(a == b); }

inline long operator==(zz_p a, long b) { return a == to_zz_p(b); }
inline long operator==(long a, zz_p b) { return to_zz_p(a) == b; }

inline long operator!=(zz_p a, long b) { return !(a == b); }
inline long operator!=(long a, zz_p b) { return !(a == b); }

// ****** random numbers

inline void random(zz_p& x)
// x = random element in zz_p

   { x._zz_p__rep = RandomBnd(zz_p::modulus()); }

inline zz_p random_zz_p()
   { zz_p x; random(x); return x; }


// ****** input/output

NTL_SNS ostream& operator<<(NTL_SNS ostream& s, zz_p a);
   
NTL_SNS istream& operator>>(NTL_SNS istream& s, zz_p& x);


NTL_CLOSE_NNS

#endif